Visual Crime Pattern Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/ |
Resumo: | Studying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena. |
id |
USP_869a842cd8f6b656cd558f9b040dee60 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09042021-161411 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Visual Crime Pattern AnalysisAnálise Visual de Padrões CriminaisAnálise visualCrime dataCrime hotspotsCrime mappingDado spacio-temporalDados criminaisDecomposição de matriz não-negativaHotspots de crimesMapeamento de crimesMatriz estocásticaNon-negative matrix factorizationSpatio-temporal dataStochastic matrixVisual analyticsStudying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena.O estudo e análise dos padrões criminais nas grandes cidades é um problema espaço-temporal desafiador. A dificuldade do problema está ligada a diferentes fatores como a modelagem de dados, detecção de hotspots de forma robusta e versátil, análise de padrões espaço-temporais e a delimitação do estudo. Trabalhos anteriores concentraram-se principalmente na análise da criminalidade com o intuito de descobrir padrões associados a fatores sociais, sazonalidade e atividades de rotina urbana em distritos, regiões e bairros inteiros. Portanto, essas ferramentas dificilmente conseguem viabilizar análises de crimes em microescala intimamente relacionadas às oportunidades de crimes, cujo entendimento é fundamental para o planejamento de ações preventivas. Permitir uma análise combinada de padrões espaciais e a visualização dos diferentes padrões de crime ocultos em sua evolução ao longo do tempo é outro desafio enfrentado pela maioria das ferramentas de análise de crime. Nesta tese, propomos um conjunto de abordagens para a análise visual interativa do crime. Com base em métodos de aprendizado de máquina, mecanismos estatísticos e matemáticos e visualização cada metodologia proposta tem como foco problemas específicos de análise de crime. As ferramentas propostas são capazes de explorar locais específicos da cidade o que é essencial para que os especialistas realizarem suas análises de forma detalhada, revelando como características urbanas relacionadas com a mobilidade, comportamento de transeuntes e a infraestrutura das cidades (por exemplo, terminais de transporte público e escolas) podem influenciar a quantidade de algum tipo de atividade criminal. A eficácia e utilidade das metodologias propostas foram demonstradas com um conjunto abrangente de análises quantitativas e qualitativas, bem como estudos de caso executados por especialistas envolvendo dados reais de diferentes cidades. Os experimentos mostram a capacidade das nossas abordagens em identificar diferentes fenômenos relacionados ao crime.Biblioteca Digitais de Teses e Dissertações da USPNonato, Luis GustavoZanabria, Germain Garcia2021-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-09T22:29:02Zoai:teses.usp.br:tde-09042021-161411Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-09T22:29:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Visual Crime Pattern Analysis Análise Visual de Padrões Criminais |
title |
Visual Crime Pattern Analysis |
spellingShingle |
Visual Crime Pattern Analysis Zanabria, Germain Garcia Análise visual Crime data Crime hotspots Crime mapping Dado spacio-temporal Dados criminais Decomposição de matriz não-negativa Hotspots de crimes Mapeamento de crimes Matriz estocástica Non-negative matrix factorization Spatio-temporal data Stochastic matrix Visual analytics |
title_short |
Visual Crime Pattern Analysis |
title_full |
Visual Crime Pattern Analysis |
title_fullStr |
Visual Crime Pattern Analysis |
title_full_unstemmed |
Visual Crime Pattern Analysis |
title_sort |
Visual Crime Pattern Analysis |
author |
Zanabria, Germain Garcia |
author_facet |
Zanabria, Germain Garcia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nonato, Luis Gustavo |
dc.contributor.author.fl_str_mv |
Zanabria, Germain Garcia |
dc.subject.por.fl_str_mv |
Análise visual Crime data Crime hotspots Crime mapping Dado spacio-temporal Dados criminais Decomposição de matriz não-negativa Hotspots de crimes Mapeamento de crimes Matriz estocástica Non-negative matrix factorization Spatio-temporal data Stochastic matrix Visual analytics |
topic |
Análise visual Crime data Crime hotspots Crime mapping Dado spacio-temporal Dados criminais Decomposição de matriz não-negativa Hotspots de crimes Mapeamento de crimes Matriz estocástica Non-negative matrix factorization Spatio-temporal data Stochastic matrix Visual analytics |
description |
Studying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256830519017472 |