Visual Crime Pattern Analysis

Detalhes bibliográficos
Autor(a) principal: Zanabria, Germain Garcia
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/
Resumo: Studying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena.
id USP_869a842cd8f6b656cd558f9b040dee60
oai_identifier_str oai:teses.usp.br:tde-09042021-161411
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Visual Crime Pattern AnalysisAnálise Visual de Padrões CriminaisAnálise visualCrime dataCrime hotspotsCrime mappingDado spacio-temporalDados criminaisDecomposição de matriz não-negativaHotspots de crimesMapeamento de crimesMatriz estocásticaNon-negative matrix factorizationSpatio-temporal dataStochastic matrixVisual analyticsStudying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena.O estudo e análise dos padrões criminais nas grandes cidades é um problema espaço-temporal desafiador. A dificuldade do problema está ligada a diferentes fatores como a modelagem de dados, detecção de hotspots de forma robusta e versátil, análise de padrões espaço-temporais e a delimitação do estudo. Trabalhos anteriores concentraram-se principalmente na análise da criminalidade com o intuito de descobrir padrões associados a fatores sociais, sazonalidade e atividades de rotina urbana em distritos, regiões e bairros inteiros. Portanto, essas ferramentas dificilmente conseguem viabilizar análises de crimes em microescala intimamente relacionadas às oportunidades de crimes, cujo entendimento é fundamental para o planejamento de ações preventivas. Permitir uma análise combinada de padrões espaciais e a visualização dos diferentes padrões de crime ocultos em sua evolução ao longo do tempo é outro desafio enfrentado pela maioria das ferramentas de análise de crime. Nesta tese, propomos um conjunto de abordagens para a análise visual interativa do crime. Com base em métodos de aprendizado de máquina, mecanismos estatísticos e matemáticos e visualização cada metodologia proposta tem como foco problemas específicos de análise de crime. As ferramentas propostas são capazes de explorar locais específicos da cidade o que é essencial para que os especialistas realizarem suas análises de forma detalhada, revelando como características urbanas relacionadas com a mobilidade, comportamento de transeuntes e a infraestrutura das cidades (por exemplo, terminais de transporte público e escolas) podem influenciar a quantidade de algum tipo de atividade criminal. A eficácia e utilidade das metodologias propostas foram demonstradas com um conjunto abrangente de análises quantitativas e qualitativas, bem como estudos de caso executados por especialistas envolvendo dados reais de diferentes cidades. Os experimentos mostram a capacidade das nossas abordagens em identificar diferentes fenômenos relacionados ao crime.Biblioteca Digitais de Teses e Dissertações da USPNonato, Luis GustavoZanabria, Germain Garcia2021-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-09T22:29:02Zoai:teses.usp.br:tde-09042021-161411Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-09T22:29:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Visual Crime Pattern Analysis
Análise Visual de Padrões Criminais
title Visual Crime Pattern Analysis
spellingShingle Visual Crime Pattern Analysis
Zanabria, Germain Garcia
Análise visual
Crime data
Crime hotspots
Crime mapping
Dado spacio-temporal
Dados criminais
Decomposição de matriz não-negativa
Hotspots de crimes
Mapeamento de crimes
Matriz estocástica
Non-negative matrix factorization
Spatio-temporal data
Stochastic matrix
Visual analytics
title_short Visual Crime Pattern Analysis
title_full Visual Crime Pattern Analysis
title_fullStr Visual Crime Pattern Analysis
title_full_unstemmed Visual Crime Pattern Analysis
title_sort Visual Crime Pattern Analysis
author Zanabria, Germain Garcia
author_facet Zanabria, Germain Garcia
author_role author
dc.contributor.none.fl_str_mv Nonato, Luis Gustavo
dc.contributor.author.fl_str_mv Zanabria, Germain Garcia
dc.subject.por.fl_str_mv Análise visual
Crime data
Crime hotspots
Crime mapping
Dado spacio-temporal
Dados criminais
Decomposição de matriz não-negativa
Hotspots de crimes
Mapeamento de crimes
Matriz estocástica
Non-negative matrix factorization
Spatio-temporal data
Stochastic matrix
Visual analytics
topic Análise visual
Crime data
Crime hotspots
Crime mapping
Dado spacio-temporal
Dados criminais
Decomposição de matriz não-negativa
Hotspots de crimes
Mapeamento de crimes
Matriz estocástica
Non-negative matrix factorization
Spatio-temporal data
Stochastic matrix
Visual analytics
description Studying and analyzing crime patterns in big cities is a challenging spatio-temporal problem. The difficulty of the problem is linked to different factors such as data modeling, unsophisticated hotspot detection techniques, spatio-temporal patterns, and study delimitation. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban activities in whole districts, regions, and neighborhoods. Those tools can hardly allow micro-scale crime analysis closely related to crime opportunity, whose understanding is fundamental for planning preventive actions. Given that, enabling a combined analysis of spatial patterns and the visualization of the different crime patterns hidden in their evolution over time is another challenge faced by most crime analysis tools. In this dissertation, we propose a set of approaches for interactive visual crime analysis. Relying on machine learning methods, statistical and mathematical mechanisms, and visualization, each proposed methodology focus on solving specific crime-related problems. These proposed tools to explore specific locations of the city turned out to be essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passerby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. The effectiveness and usefulness of the proposed methodologies have been demonstrated with a comprehensive set of quantitative and qualitative analyses, as well as case studies performed by domain experts involving real data of different-sized cities. The experiments show the capability of our approaches in identifying different crime-related phenomena.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042021-161411/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256830519017472