Environment for the analysis and comparison of texture descriptors

Detalhes bibliográficos
Autor(a) principal: Farfan, Alex Josue Florez
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-103709/
Resumo: Texture analysis is an active area of research and plays an important role in computer vision applications. Texture, along with color and shape, contains important features of an image. Texture analysis allows to characterize regions inside an image by using descriptors. These descriptors are applied in the study of texture classification, in which the goal is to identify features that characterize a particular texture and assign a label to an image based on these features. Because of the importance of texture analysis in computer vision, researchers are continually devising and developing new descriptors, with the aim to improve the discriminative power of texture features of an image. A difficult task in texture analysis is to compare these descriptors and verify which are the most suitable for each type of image. The lack of a good review and comparison of descriptors cause that some applications do not use the most appropriate descriptor for a specific type of texture. Therefore, in this dissertation it was developed a research and collaboration platform for the analysis and comparison of texture descriptors and texture datasets. The platform aims to support the researchers in the area of texture analysis, specifically in texture classification. The platform was useful to perform an extensive comparison of texture descriptors and various texture datasets. Using the platform, in some datasets the results produced were better than those previously found in the literature. The results indicate that the classification accuracy varies according to the descriptor and classifier employed. By varying the parameters of texture descriptors it was possible to get different, yet better, classification accuracies.
id USP_86f433790be78e0999c3ed5f0817b6e6
oai_identifier_str oai:teses.usp.br:tde-02012019-103709
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Environment for the analysis and comparison of texture descriptorsAmbiente para análise e comparação de descritores de texturaAmbiente webAnálise de texturaClassificação de texturaComputer visionDescritor de texturaTexture analysisTexture classificationTexture descriptorVisão por computadorWeb EnvironmentTexture analysis is an active area of research and plays an important role in computer vision applications. Texture, along with color and shape, contains important features of an image. Texture analysis allows to characterize regions inside an image by using descriptors. These descriptors are applied in the study of texture classification, in which the goal is to identify features that characterize a particular texture and assign a label to an image based on these features. Because of the importance of texture analysis in computer vision, researchers are continually devising and developing new descriptors, with the aim to improve the discriminative power of texture features of an image. A difficult task in texture analysis is to compare these descriptors and verify which are the most suitable for each type of image. The lack of a good review and comparison of descriptors cause that some applications do not use the most appropriate descriptor for a specific type of texture. Therefore, in this dissertation it was developed a research and collaboration platform for the analysis and comparison of texture descriptors and texture datasets. The platform aims to support the researchers in the area of texture analysis, specifically in texture classification. The platform was useful to perform an extensive comparison of texture descriptors and various texture datasets. Using the platform, in some datasets the results produced were better than those previously found in the literature. The results indicate that the classification accuracy varies according to the descriptor and classifier employed. By varying the parameters of texture descriptors it was possible to get different, yet better, classification accuracies.A análise de textura é uma área ativa de pesquisa que desempenha um papel importante em aplicações de visão computacional. A textura, juntamente com a cor e a forma, contém características importantes de uma imagem. A análise de textura permite caracterizar regiões dentro de uma imagem usando descritores. Esses descritores são aplicados no estudo de classificação de texturas, no qual o objetivo é identificar características que distingam uma determinada textura e atribuir um rótulo a uma imagem baseada nessas características. Devido à importância da análise de textura na visão computacional, os pesquisadores estão continuamente criando e desenvolvendo novos descritores, com o objetivo de melhorar o poder discriminativo dessas características em uma imagem. Uma tarefa difícil na análise de textura é comparar esses descritores e verificar quais são os mais adequados para cada tipo de tipo de imagem. A falta de uma boa revisão e comparação de descritores de textura pode fazer com que algumas aplicações não utilizem o descritor mais adequado para um tipo específico de textura. Portanto, nesta dissertação foi desenvolvida uma plataforma de pesquisa e colaboração para a análise e comparação de descritores de textura e conjuntos de dados de textura. A plataforma visa apoiar os pesquisadores na área de análise de textura, especificamente na classificação de texturas. A plataforma foi útil para realizar uma comparação extensiva de descritores de textura e vários conjuntos de dados de textura. Com essa plataforma, em alguns conjuntos de dados os resultados encontrados foram melhores que aqueles encontrados anteriormente na literatura. Os resultados indicam que a acurácia de classificação muda segundo o descritor e o classificador usado. Mudando os valores dos parâmetros dos descritores de textura foi possível obter acurácias diferentes e até melhores.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezFarfan, Alex Josue Florez2018-10-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-103709/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-02012019-103709Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Environment for the analysis and comparison of texture descriptors
Ambiente para análise e comparação de descritores de textura
title Environment for the analysis and comparison of texture descriptors
spellingShingle Environment for the analysis and comparison of texture descriptors
Farfan, Alex Josue Florez
Ambiente web
Análise de textura
Classificação de textura
Computer vision
Descritor de textura
Texture analysis
Texture classification
Texture descriptor
Visão por computador
Web Environment
title_short Environment for the analysis and comparison of texture descriptors
title_full Environment for the analysis and comparison of texture descriptors
title_fullStr Environment for the analysis and comparison of texture descriptors
title_full_unstemmed Environment for the analysis and comparison of texture descriptors
title_sort Environment for the analysis and comparison of texture descriptors
author Farfan, Alex Josue Florez
author_facet Farfan, Alex Josue Florez
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Farfan, Alex Josue Florez
dc.subject.por.fl_str_mv Ambiente web
Análise de textura
Classificação de textura
Computer vision
Descritor de textura
Texture analysis
Texture classification
Texture descriptor
Visão por computador
Web Environment
topic Ambiente web
Análise de textura
Classificação de textura
Computer vision
Descritor de textura
Texture analysis
Texture classification
Texture descriptor
Visão por computador
Web Environment
description Texture analysis is an active area of research and plays an important role in computer vision applications. Texture, along with color and shape, contains important features of an image. Texture analysis allows to characterize regions inside an image by using descriptors. These descriptors are applied in the study of texture classification, in which the goal is to identify features that characterize a particular texture and assign a label to an image based on these features. Because of the importance of texture analysis in computer vision, researchers are continually devising and developing new descriptors, with the aim to improve the discriminative power of texture features of an image. A difficult task in texture analysis is to compare these descriptors and verify which are the most suitable for each type of image. The lack of a good review and comparison of descriptors cause that some applications do not use the most appropriate descriptor for a specific type of texture. Therefore, in this dissertation it was developed a research and collaboration platform for the analysis and comparison of texture descriptors and texture datasets. The platform aims to support the researchers in the area of texture analysis, specifically in texture classification. The platform was useful to perform an extensive comparison of texture descriptors and various texture datasets. Using the platform, in some datasets the results produced were better than those previously found in the literature. The results indicate that the classification accuracy varies according to the descriptor and classifier employed. By varying the parameters of texture descriptors it was possible to get different, yet better, classification accuracies.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-103709/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02012019-103709/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256596767309824