Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado

Detalhes bibliográficos
Autor(a) principal: Tisovec, Fabio Alexandre Campos
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45134/tde-20230727-113230/
Resumo: Dentro da área de modelagem de sistemas biológicos, o estudo de redes gênicas inclui modelar interações, simular a dinâmica da rede e sugerir possíveis formas de intervir em seu funcionamento. Em particular, o problema de intervenção em redes gênicas é o de encontrar a melhor forma de intervir em sua evolução natural visando evitar cenários indesejáveis (doenças) ou atingir cenários desejáveis (estados sadios ou controláveis). Um modelo matemático comumente usado para repre- sentar redes gênicas é a Rede Booleana Probabilística (Probabilistic Boolean Network - PBN), em que os genes de uma dada rede são representados por variáveis booleanas e o sistema progride de um instante de tempo para o seguinte de acordo com funções booleanas, cada qual associada a uma probabilidade. Redes gênicas com ações de intervenção podem ser modeladas por um conjunto de redes booleanas probabilísticas com diferentes dinâmicas, uma para cada ação ou combinação de ações. Porém, a escolha da melhor ação para cada estado é feita resolvendo-se um processo de decisão markoviano com estados enumerados, que quando gerado a partir de uma rede booleana probabilística pode resultar em uma explosão combinatória de estados. Nesse trabalho mostraremos como o problema de intervenção em redes gênicas pode ser modelado como um processo de decisão markoviano fatorado, isto é, um processo de Markov descrito em termos de variáveis de estados que pode ser diretamente extraído de uma Rede Booleana Probabilística. Com tal modelo, podemos usar algoritmos simbólicos (que manipulam conjuntos de estados) capazes de resolver problemas com até centenas de variáveis de estado. Por fim, este trabalho propõe apresentar uma possível extensão deste modelo fatorado, onde admite-se probabilidades imprecisas de transição de estado dos genes, sinalizando um conhecimento impreciso destas transições.
id USP_872d73e278b091a6d816a11af094f9af
oai_identifier_str oai:teses.usp.br:tde-20230727-113230
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatoradoGenetic network intervention modeled as a factored and imprecise Markovian decision processInteligência ArtificialRegulação GênicaDentro da área de modelagem de sistemas biológicos, o estudo de redes gênicas inclui modelar interações, simular a dinâmica da rede e sugerir possíveis formas de intervir em seu funcionamento. Em particular, o problema de intervenção em redes gênicas é o de encontrar a melhor forma de intervir em sua evolução natural visando evitar cenários indesejáveis (doenças) ou atingir cenários desejáveis (estados sadios ou controláveis). Um modelo matemático comumente usado para repre- sentar redes gênicas é a Rede Booleana Probabilística (Probabilistic Boolean Network - PBN), em que os genes de uma dada rede são representados por variáveis booleanas e o sistema progride de um instante de tempo para o seguinte de acordo com funções booleanas, cada qual associada a uma probabilidade. Redes gênicas com ações de intervenção podem ser modeladas por um conjunto de redes booleanas probabilísticas com diferentes dinâmicas, uma para cada ação ou combinação de ações. Porém, a escolha da melhor ação para cada estado é feita resolvendo-se um processo de decisão markoviano com estados enumerados, que quando gerado a partir de uma rede booleana probabilística pode resultar em uma explosão combinatória de estados. Nesse trabalho mostraremos como o problema de intervenção em redes gênicas pode ser modelado como um processo de decisão markoviano fatorado, isto é, um processo de Markov descrito em termos de variáveis de estados que pode ser diretamente extraído de uma Rede Booleana Probabilística. Com tal modelo, podemos usar algoritmos simbólicos (que manipulam conjuntos de estados) capazes de resolver problemas com até centenas de variáveis de estado. Por fim, este trabalho propõe apresentar uma possível extensão deste modelo fatorado, onde admite-se probabilidades imprecisas de transição de estado dos genes, sinalizando um conhecimento impreciso destas transições.Within the area of modelling biological systems, the study of genetic networks inciudes model- ling genetic interactions, simulate their dinamics and suggest possible means of intervention in their workings. Such study is very important to the public health because it helps prevent undesirable scenarios ( diseases) and reach desirable scenarios (healthy states). One mathematical model com- monly used to representa genetic network is a Probability Boolean Network ( PBN), where the genes of the network are represented by boolean variables and the system progress from one instant to the next based on a set of boolean functions, each associated to a probability. Genetic networks with possible interventions can be modelled as sets of PBNs, one PBN for each action (intervention). The selection for the best action for each state can be defined by solving a markovian decision process with an enumerated space state, but the size of such space state can grow exponentially if defined based on a probabilistic boolean network. This work hru, the objective of presenting a model for genetic network intervention based on probabilistic boolean networks and to show how this model can be solved using a finite horizon factored Markovian Decision Process, where the state of the network is represemed by a set of state variables|further, this work intend to present a possible extension of the factorec model, where the state transition probabilities are not perfectly known, thus modelled as ranges of probabilities.Biblioteca Digitais de Teses e Dissertações da USPBarros, Leliane Nunes deTisovec, Fabio Alexandre Campos2016-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45134/tde-20230727-113230/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-07-27T19:06:05Zoai:teses.usp.br:tde-20230727-113230Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-07-27T19:06:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
Genetic network intervention modeled as a factored and imprecise Markovian decision process
title Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
spellingShingle Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
Tisovec, Fabio Alexandre Campos
Inteligência Artificial
Regulação Gênica
title_short Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
title_full Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
title_fullStr Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
title_full_unstemmed Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
title_sort Intervenção em redes de regulação gênica modelado como um processo de decisão Markoviano fatorado
author Tisovec, Fabio Alexandre Campos
author_facet Tisovec, Fabio Alexandre Campos
author_role author
dc.contributor.none.fl_str_mv Barros, Leliane Nunes de
dc.contributor.author.fl_str_mv Tisovec, Fabio Alexandre Campos
dc.subject.por.fl_str_mv Inteligência Artificial
Regulação Gênica
topic Inteligência Artificial
Regulação Gênica
description Dentro da área de modelagem de sistemas biológicos, o estudo de redes gênicas inclui modelar interações, simular a dinâmica da rede e sugerir possíveis formas de intervir em seu funcionamento. Em particular, o problema de intervenção em redes gênicas é o de encontrar a melhor forma de intervir em sua evolução natural visando evitar cenários indesejáveis (doenças) ou atingir cenários desejáveis (estados sadios ou controláveis). Um modelo matemático comumente usado para repre- sentar redes gênicas é a Rede Booleana Probabilística (Probabilistic Boolean Network - PBN), em que os genes de uma dada rede são representados por variáveis booleanas e o sistema progride de um instante de tempo para o seguinte de acordo com funções booleanas, cada qual associada a uma probabilidade. Redes gênicas com ações de intervenção podem ser modeladas por um conjunto de redes booleanas probabilísticas com diferentes dinâmicas, uma para cada ação ou combinação de ações. Porém, a escolha da melhor ação para cada estado é feita resolvendo-se um processo de decisão markoviano com estados enumerados, que quando gerado a partir de uma rede booleana probabilística pode resultar em uma explosão combinatória de estados. Nesse trabalho mostraremos como o problema de intervenção em redes gênicas pode ser modelado como um processo de decisão markoviano fatorado, isto é, um processo de Markov descrito em termos de variáveis de estados que pode ser diretamente extraído de uma Rede Booleana Probabilística. Com tal modelo, podemos usar algoritmos simbólicos (que manipulam conjuntos de estados) capazes de resolver problemas com até centenas de variáveis de estado. Por fim, este trabalho propõe apresentar uma possível extensão deste modelo fatorado, onde admite-se probabilidades imprecisas de transição de estado dos genes, sinalizando um conhecimento impreciso destas transições.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45134/tde-20230727-113230/
url https://teses.usp.br/teses/disponiveis/45/45134/tde-20230727-113230/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257218888499200