Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo

Detalhes bibliográficos
Autor(a) principal: Tangerino, Giovana Tripoloni
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18145/tde-22072016-142046/
Resumo: O trabalho apresentado destaca a importância do uso de práticas agrícolas que estimulem a manutenção da agricultura em níveis de alta produtividade, mas que, ao mesmo tempo, viabilizem uma minimização dos efeitos negativos da agricultura sobre o meio ambiente. O trabalho situa-se no contexto da aquisição de informação sobre a plantação considerando sua variabilidade para uso em Agricultura de Precisão. Foi proposto o desenvolvimento de um método inteligente de amostragem, que faz uso de sensores embarcados em veículos autônomos com capacidade de processamento em conjunto com técnicas geoestatísticas de amostragem. O processo de amostragem proposto leva em consideração a dependência espacial do campo, obtendo apenas a quantidade de informação necessária para reproduzir confiavelmente a variável em estudo para análises posteriores, amostrando mais densamente áreas de maior variabilidade e menos densamente áreas de menor variabilidade. O método desenvolvido estabelece a exploração em duas fases. Na fase de levantamento exploratório é utilizado um esquema de amostragem aninhado adaptado para as características do sistema de coleta de dados, nesta fase é realizada uma primeira avaliação sobre a escala espacial de variabilidade do campo. Na fase do levantamento principal são realizados ciclos de amostragens em grade, quantas vezes seja necessário até que critérios de decisão sejam atingidos. Nestes ciclos, ou etapas, são tomadas decisões com base na qualidade e na densidade de variabilidade das amostras. Tais decisões estabelecem se a área deve ser mais amostrada ou dividida em subáreas. A mínima precisão que se deseja alcançar é determinada pelo usuário e também limitada pelas capacidades estruturais da máquina que realizará aplicações a taxa variada. Em comparação com métodos tradicionais de obtenção de dados com sensores embarcados, as análises dos resultados mostram reduções que chegam a 98% na quantidade de pontos amostrados e redução de mais de 49% na distância final percorrida pelo veículo. Assim, a utilização do método proposto viabiliza a redução em custos computacionais de armazenagem e processamento, de gastos com combustíveis e de tempo de mão de obra. Os resultados evidenciam que é viável a amostragem baseada na densidade de variabilidade, racionalizando a quantidade, a qualidade e a disposição da informação obtida e armazenada. Em conclusão, o método de amostragem proposto apresenta potencial capacidade para sua utilização como uma ferramenta de apoio às novas práticas agrícolas, oferecendo uma alternativa mais eficiente e inteligente aos métodos tradicionais de coleta de dados.
id USP_87f0b1bbc51a3e22f4c0f5dd5fb6c6df
oai_identifier_str oai:teses.usp.br:tde-22072016-142046
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campoSampling method for agricultural area with embedded sensors: an approach that takes the variability of the field into accountAgricultura de precisãoAmostragem inteligentePath planningPlanejamento de trajetóriaPrecision agricultureSmart samplingVariabilidadeVariabilityO trabalho apresentado destaca a importância do uso de práticas agrícolas que estimulem a manutenção da agricultura em níveis de alta produtividade, mas que, ao mesmo tempo, viabilizem uma minimização dos efeitos negativos da agricultura sobre o meio ambiente. O trabalho situa-se no contexto da aquisição de informação sobre a plantação considerando sua variabilidade para uso em Agricultura de Precisão. Foi proposto o desenvolvimento de um método inteligente de amostragem, que faz uso de sensores embarcados em veículos autônomos com capacidade de processamento em conjunto com técnicas geoestatísticas de amostragem. O processo de amostragem proposto leva em consideração a dependência espacial do campo, obtendo apenas a quantidade de informação necessária para reproduzir confiavelmente a variável em estudo para análises posteriores, amostrando mais densamente áreas de maior variabilidade e menos densamente áreas de menor variabilidade. O método desenvolvido estabelece a exploração em duas fases. Na fase de levantamento exploratório é utilizado um esquema de amostragem aninhado adaptado para as características do sistema de coleta de dados, nesta fase é realizada uma primeira avaliação sobre a escala espacial de variabilidade do campo. Na fase do levantamento principal são realizados ciclos de amostragens em grade, quantas vezes seja necessário até que critérios de decisão sejam atingidos. Nestes ciclos, ou etapas, são tomadas decisões com base na qualidade e na densidade de variabilidade das amostras. Tais decisões estabelecem se a área deve ser mais amostrada ou dividida em subáreas. A mínima precisão que se deseja alcançar é determinada pelo usuário e também limitada pelas capacidades estruturais da máquina que realizará aplicações a taxa variada. Em comparação com métodos tradicionais de obtenção de dados com sensores embarcados, as análises dos resultados mostram reduções que chegam a 98% na quantidade de pontos amostrados e redução de mais de 49% na distância final percorrida pelo veículo. Assim, a utilização do método proposto viabiliza a redução em custos computacionais de armazenagem e processamento, de gastos com combustíveis e de tempo de mão de obra. Os resultados evidenciam que é viável a amostragem baseada na densidade de variabilidade, racionalizando a quantidade, a qualidade e a disposição da informação obtida e armazenada. Em conclusão, o método de amostragem proposto apresenta potencial capacidade para sua utilização como uma ferramenta de apoio às novas práticas agrícolas, oferecendo uma alternativa mais eficiente e inteligente aos métodos tradicionais de coleta de dados.The present work highlights the importance of using farming practices that encourage the maintenance of agriculture in high levels of productivity and, at the same time, enable reduction of the negative effects of agriculture on the environment. The work is in the context of acquisition of crop information considering its variability for use in Precision Agriculture. The development of a smart sampling method has been proposed, which uses of embedded sensors in autonomous vehicles with a processing capacity together with sampling geostatistics techniques. The sampling process takes into account the spatial dependence of the field, obtaining strictly the necessary amount of information to subsequent analyzes in a reliable way. It also aims to sample areas of higher variability more densily and areas of lower variability less densily. The developed method performs the exploration in two phases. In the exploratory phase, a nested sampling scheme adapted to the characteristics of the system is used. In this phase, the first assessment about the spatial scale of variability of the field is done. In the main survey phase, grid samplings are performed in stages, as many times as necessary until the decision criteria are reached. At the stages of the main survey, decisions are taken based on the quality and variability density of the samples, and this establishes whether the area should be better sampled or divided into subareas. The user determines the minimum precision to be reached. The structural capabilities of the machine, that will perform the variable rate applications, also restrict the system precision. The result analyses show that the number of samples reduced 98% and the final distance ran by the autonomous vehicle reduced 49%, compared to traditional methods that use embedded sensors to collect data. Thus, the use of the proposed method represents reduced computational costs of data storage and processing, fuel costs and manpower. The results show that the sampling based on variability density is feasible, rationalizing the quantity, quality and layout of the information obtained and stored. In summary, the proposed sampling method shows potential capacity to be used as a tool to support new agricultural practices, offering a more efficient and smart alternative to traditional methods of data collection.Biblioteca Digitais de Teses e Dissertações da USPInamasu, Ricardo YassushiTangerino, Giovana Tripoloni2014-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18145/tde-22072016-142046/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:03:47Zoai:teses.usp.br:tde-22072016-142046Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
Sampling method for agricultural area with embedded sensors: an approach that takes the variability of the field into account
title Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
spellingShingle Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
Tangerino, Giovana Tripoloni
Agricultura de precisão
Amostragem inteligente
Path planning
Planejamento de trajetória
Precision agriculture
Smart sampling
Variabilidade
Variability
title_short Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
title_full Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
title_fullStr Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
title_full_unstemmed Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
title_sort Método de amostragem de área agrícola com sensores embarcados: uma abordagem que leva em conta a variabilidade do campo
author Tangerino, Giovana Tripoloni
author_facet Tangerino, Giovana Tripoloni
author_role author
dc.contributor.none.fl_str_mv Inamasu, Ricardo Yassushi
dc.contributor.author.fl_str_mv Tangerino, Giovana Tripoloni
dc.subject.por.fl_str_mv Agricultura de precisão
Amostragem inteligente
Path planning
Planejamento de trajetória
Precision agriculture
Smart sampling
Variabilidade
Variability
topic Agricultura de precisão
Amostragem inteligente
Path planning
Planejamento de trajetória
Precision agriculture
Smart sampling
Variabilidade
Variability
description O trabalho apresentado destaca a importância do uso de práticas agrícolas que estimulem a manutenção da agricultura em níveis de alta produtividade, mas que, ao mesmo tempo, viabilizem uma minimização dos efeitos negativos da agricultura sobre o meio ambiente. O trabalho situa-se no contexto da aquisição de informação sobre a plantação considerando sua variabilidade para uso em Agricultura de Precisão. Foi proposto o desenvolvimento de um método inteligente de amostragem, que faz uso de sensores embarcados em veículos autônomos com capacidade de processamento em conjunto com técnicas geoestatísticas de amostragem. O processo de amostragem proposto leva em consideração a dependência espacial do campo, obtendo apenas a quantidade de informação necessária para reproduzir confiavelmente a variável em estudo para análises posteriores, amostrando mais densamente áreas de maior variabilidade e menos densamente áreas de menor variabilidade. O método desenvolvido estabelece a exploração em duas fases. Na fase de levantamento exploratório é utilizado um esquema de amostragem aninhado adaptado para as características do sistema de coleta de dados, nesta fase é realizada uma primeira avaliação sobre a escala espacial de variabilidade do campo. Na fase do levantamento principal são realizados ciclos de amostragens em grade, quantas vezes seja necessário até que critérios de decisão sejam atingidos. Nestes ciclos, ou etapas, são tomadas decisões com base na qualidade e na densidade de variabilidade das amostras. Tais decisões estabelecem se a área deve ser mais amostrada ou dividida em subáreas. A mínima precisão que se deseja alcançar é determinada pelo usuário e também limitada pelas capacidades estruturais da máquina que realizará aplicações a taxa variada. Em comparação com métodos tradicionais de obtenção de dados com sensores embarcados, as análises dos resultados mostram reduções que chegam a 98% na quantidade de pontos amostrados e redução de mais de 49% na distância final percorrida pelo veículo. Assim, a utilização do método proposto viabiliza a redução em custos computacionais de armazenagem e processamento, de gastos com combustíveis e de tempo de mão de obra. Os resultados evidenciam que é viável a amostragem baseada na densidade de variabilidade, racionalizando a quantidade, a qualidade e a disposição da informação obtida e armazenada. Em conclusão, o método de amostragem proposto apresenta potencial capacidade para sua utilização como uma ferramenta de apoio às novas práticas agrícolas, oferecendo uma alternativa mais eficiente e inteligente aos métodos tradicionais de coleta de dados.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18145/tde-22072016-142046/
url http://www.teses.usp.br/teses/disponiveis/18/18145/tde-22072016-142046/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257274979975168