Teoria, métodos e aplicações de otimização multiobjetivo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-25042011-122013/ |
Resumo: | Problemas com múltiplos objetivos são muito frequentes nas áreas de Otimização, Economia, Finanças, Transportes, Engenharia e várias outras. Como os objetivos são, geralmente, conflitantes, faz-se necessário o uso de técnicas apropriadas para obter boas soluções. A área que trata de problemas deste tipo é chamada de Otimização Multiobjetivo. Neste trabalho, estudamos os problemas dessa área e alguns dos métodos existentes para resolvê-los. Primeiramente, alguns conceitos relacionados ao conjunto de soluções são definidos, como o de eficiência, no intuito de entender o que seria a melhor solução para este tipo de problema. Em seguida, apresentamos algumas condições de otimalidade de primeira ordem, incluindo as do tipo Fritz John para problemas de Otimização Multiobjetivo. Discutimos ainda sobre algumas condições de regularidade e total regularidade, as quais desempenham o mesmo papel das condições de qualificação em Programação Não-Linear, propiciando a estrita positividade dos multiplicadores de Lagrange associados às funções objetivo. Posteriormente, alguns dos métodos existentes para resolver problemas de Otimização Multiobjetivo são descritos e comparados entre si. Ao final, aplicamos a teoria e métodos de Otimização Multiobjetivo nas áreas de Compressed Sensing e Otimização de Portfolio. Exibimos então testes computacionais realizados com alguns dos métodos discutidos envolvendo problemas de Otimização de Portfolio e fazemos uma análise dos resultados. |
id |
USP_89421926c343abbf7d2210a1c6d4626c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25042011-122013 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Teoria, métodos e aplicações de otimização multiobjetivoTheory, methods and applications of multiobjective optimizationcompressed sensingcompressed sensingmultiobjective optimizationnonlinear programmingotimização de portfoliootimização multiobjetivoportfolio optimizationprogramação não-linearProblemas com múltiplos objetivos são muito frequentes nas áreas de Otimização, Economia, Finanças, Transportes, Engenharia e várias outras. Como os objetivos são, geralmente, conflitantes, faz-se necessário o uso de técnicas apropriadas para obter boas soluções. A área que trata de problemas deste tipo é chamada de Otimização Multiobjetivo. Neste trabalho, estudamos os problemas dessa área e alguns dos métodos existentes para resolvê-los. Primeiramente, alguns conceitos relacionados ao conjunto de soluções são definidos, como o de eficiência, no intuito de entender o que seria a melhor solução para este tipo de problema. Em seguida, apresentamos algumas condições de otimalidade de primeira ordem, incluindo as do tipo Fritz John para problemas de Otimização Multiobjetivo. Discutimos ainda sobre algumas condições de regularidade e total regularidade, as quais desempenham o mesmo papel das condições de qualificação em Programação Não-Linear, propiciando a estrita positividade dos multiplicadores de Lagrange associados às funções objetivo. Posteriormente, alguns dos métodos existentes para resolver problemas de Otimização Multiobjetivo são descritos e comparados entre si. Ao final, aplicamos a teoria e métodos de Otimização Multiobjetivo nas áreas de Compressed Sensing e Otimização de Portfolio. Exibimos então testes computacionais realizados com alguns dos métodos discutidos envolvendo problemas de Otimização de Portfolio e fazemos uma análise dos resultados.Problems with multiple objectives are very frequent in areas such as Optimization, Economy, Finance, Transportation, Engineering and many others. Since the objectives are usually conflicting, there is a need for appropriate techniques to obtain good solutions. The area that deals with problems of this type is called Multiobjective Optimization. The aim of this work is to study the problems of such area and some of the methods available to solve them. Firstly, some basic concepts related to the feasible set are defined, for instance, efficiency, in order to comprehend which solution could be the best for this kind of problem. Secondly, we present some first-order optimality conditions, including the Fritz John ones for Multiobjective Optimization. We also discuss about regularity and total regularity conditions, which play the same role in Nonlinear Multiobjective Optimization as the constraint qualifications in Nonlinear Programming, providing the strict positivity of the Lagrange multipliers associated to the objective functions. Afterwards, some of the existing methods to solve Multiobjective Optimization problems are described and compared with each other. At last, the theory and methods of Multiobjective Optimization are applied into the fields of Compressed Sensing and Portfolio Optimization. We, then, show computational tests performed with some of the methods discussed involving Portfolio Optimization problems and we present an analysis of the results.Biblioteca Digitais de Teses e Dissertações da USPBirgin, Ernesto Julian GoldbergSampaio, Phillipe Rodrigues2011-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-25042011-122013/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-25042011-122013Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Teoria, métodos e aplicações de otimização multiobjetivo Theory, methods and applications of multiobjective optimization |
title |
Teoria, métodos e aplicações de otimização multiobjetivo |
spellingShingle |
Teoria, métodos e aplicações de otimização multiobjetivo Sampaio, Phillipe Rodrigues compressed sensing compressed sensing multiobjective optimization nonlinear programming otimização de portfolio otimização multiobjetivo portfolio optimization programação não-linear |
title_short |
Teoria, métodos e aplicações de otimização multiobjetivo |
title_full |
Teoria, métodos e aplicações de otimização multiobjetivo |
title_fullStr |
Teoria, métodos e aplicações de otimização multiobjetivo |
title_full_unstemmed |
Teoria, métodos e aplicações de otimização multiobjetivo |
title_sort |
Teoria, métodos e aplicações de otimização multiobjetivo |
author |
Sampaio, Phillipe Rodrigues |
author_facet |
Sampaio, Phillipe Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Birgin, Ernesto Julian Goldberg |
dc.contributor.author.fl_str_mv |
Sampaio, Phillipe Rodrigues |
dc.subject.por.fl_str_mv |
compressed sensing compressed sensing multiobjective optimization nonlinear programming otimização de portfolio otimização multiobjetivo portfolio optimization programação não-linear |
topic |
compressed sensing compressed sensing multiobjective optimization nonlinear programming otimização de portfolio otimização multiobjetivo portfolio optimization programação não-linear |
description |
Problemas com múltiplos objetivos são muito frequentes nas áreas de Otimização, Economia, Finanças, Transportes, Engenharia e várias outras. Como os objetivos são, geralmente, conflitantes, faz-se necessário o uso de técnicas apropriadas para obter boas soluções. A área que trata de problemas deste tipo é chamada de Otimização Multiobjetivo. Neste trabalho, estudamos os problemas dessa área e alguns dos métodos existentes para resolvê-los. Primeiramente, alguns conceitos relacionados ao conjunto de soluções são definidos, como o de eficiência, no intuito de entender o que seria a melhor solução para este tipo de problema. Em seguida, apresentamos algumas condições de otimalidade de primeira ordem, incluindo as do tipo Fritz John para problemas de Otimização Multiobjetivo. Discutimos ainda sobre algumas condições de regularidade e total regularidade, as quais desempenham o mesmo papel das condições de qualificação em Programação Não-Linear, propiciando a estrita positividade dos multiplicadores de Lagrange associados às funções objetivo. Posteriormente, alguns dos métodos existentes para resolver problemas de Otimização Multiobjetivo são descritos e comparados entre si. Ao final, aplicamos a teoria e métodos de Otimização Multiobjetivo nas áreas de Compressed Sensing e Otimização de Portfolio. Exibimos então testes computacionais realizados com alguns dos métodos discutidos envolvendo problemas de Otimização de Portfolio e fazemos uma análise dos resultados. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-25042011-122013/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-25042011-122013/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257325843251200 |