Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais

Detalhes bibliográficos
Autor(a) principal: Diniz, Hélio
Data de Publicação: 1999
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-110702/
Resumo: Esta dissertação investiga a possibilidade de integração de Redes Neurais Artificiais (RNAs) e Método Estocásticos para previsão de séries temporais. O problema de previsão é geralmente abordado através de Métodos Estocásticos. Ultimamente, as RNAs têm sido muito utilizadas para a construção de previsores não lineares em diferente áreas de aplicações. Contudo, as arquiteturas da RNAs devem também ser parcimoniosas, ou seja, apenas considerar as entradas mais relevantes para realizar uma boa previsão. Assim, várias abordagens vêm sendo propostas para melhorar o projeto de arquitetura em problemas de previsão. Alguns exemplos destas abordagens são a combinação de RNAs e métodos Box 8c Jenkins, as técnicas de seleção usando métodos de poda de RNAs e modelos de RNAs com capacidade de processamento temporal. Além disso, as vantagens particulares dos previsores construídos seguindo tais abordagens podem ser combinadas através de comitês ou combinadores de previsão. Os experimentos desta dissertação foram realizados com dados sobre séries temporais de cotação de moedas e ações.
id USP_895f38d358df695012fba40f9a42cc52
oai_identifier_str oai:teses.usp.br:tde-06032018-110702
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries TemporaisNot availableNão disponívelNot availableEsta dissertação investiga a possibilidade de integração de Redes Neurais Artificiais (RNAs) e Método Estocásticos para previsão de séries temporais. O problema de previsão é geralmente abordado através de Métodos Estocásticos. Ultimamente, as RNAs têm sido muito utilizadas para a construção de previsores não lineares em diferente áreas de aplicações. Contudo, as arquiteturas da RNAs devem também ser parcimoniosas, ou seja, apenas considerar as entradas mais relevantes para realizar uma boa previsão. Assim, várias abordagens vêm sendo propostas para melhorar o projeto de arquitetura em problemas de previsão. Alguns exemplos destas abordagens são a combinação de RNAs e métodos Box 8c Jenkins, as técnicas de seleção usando métodos de poda de RNAs e modelos de RNAs com capacidade de processamento temporal. Além disso, as vantagens particulares dos previsores construídos seguindo tais abordagens podem ser combinadas através de comitês ou combinadores de previsão. Os experimentos desta dissertação foram realizados com dados sobre séries temporais de cotação de moedas e ações.This work investigates the potential integration of Artificial Neural Networks (ANNs) and Stochastic Methods for time series prediction. The prediction problem is usually solved through stochastic methods. Recently, ANNs have been used in order to create nonlinear predictors in different arcas of application. However, the ANNs architecturcs should also be parsimonious, e. g., they should just consider the most relevant inputs so as to earry out good predietions. Therefore, severa] approaches have been proposed in order to improve the architecture design in this realm. Some examples of those approaches are the combination of ANNs the Box & Jenkins method, the variable seleetion teehniques using pruning methods and ANNs dynamic models with processing temporal skills. Besides, the particular advantages of each individual predictor that are created following those approaches can bc combined through a forecasting committee. The experiments of this dissertation were carried out using real-world data sets of exchange rate and stock markets time series.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deDiniz, Hélio1999-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-110702/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-06032018-110702Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
Not available
title Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
spellingShingle Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
Diniz, Hélio
Não disponível
Not available
title_short Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
title_full Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
title_fullStr Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
title_full_unstemmed Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
title_sort Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
author Diniz, Hélio
author_facet Diniz, Hélio
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Diniz, Hélio
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Esta dissertação investiga a possibilidade de integração de Redes Neurais Artificiais (RNAs) e Método Estocásticos para previsão de séries temporais. O problema de previsão é geralmente abordado através de Métodos Estocásticos. Ultimamente, as RNAs têm sido muito utilizadas para a construção de previsores não lineares em diferente áreas de aplicações. Contudo, as arquiteturas da RNAs devem também ser parcimoniosas, ou seja, apenas considerar as entradas mais relevantes para realizar uma boa previsão. Assim, várias abordagens vêm sendo propostas para melhorar o projeto de arquitetura em problemas de previsão. Alguns exemplos destas abordagens são a combinação de RNAs e métodos Box 8c Jenkins, as técnicas de seleção usando métodos de poda de RNAs e modelos de RNAs com capacidade de processamento temporal. Além disso, as vantagens particulares dos previsores construídos seguindo tais abordagens podem ser combinadas através de comitês ou combinadores de previsão. Os experimentos desta dissertação foram realizados com dados sobre séries temporais de cotação de moedas e ações.
publishDate 1999
dc.date.none.fl_str_mv 1999-08-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-110702/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-110702/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256761790103552