Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/ |
Resumo: | One of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle. |
id |
USP_8b0d14adfc888cb4ccfecad710c5e03a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19022020-123910 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approachTopografia dinâmica e convecção mantélica induzidas pela subducção de litosfera oceânica: uma abordagem numéricaconvecção do mantodynamic topographyfinite element methodmantle convectionmétodo dos elementos finitossubdução da litosfera oceânicasubduction of oceanic lithospheretopografia dinâmicaOne of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle.Uma das principais forças que guiam a tectônica de placas é induzida pela subducção da litosfera oceânica fria e densa, criando uma flutuabilidade negativa em relação ao manto mais quente adjacente. Esse movimento descendente perturba o padrão de fluxo principalmente no manto superior, afetando também o deslocamento vertical da superfície da Terra na escala de tempo geológica, fenômeno conhecido como topografia dinâmica. Devido à complexidade física desses processos, uma maneira natural de estudar a subducção de placas litosféricas é através do uso de modelos numéricos. O objetivo do presente trabalho é o desenvolvimento de cenários numéricos que reproduzam alguns dos principais aspectos observados sobre geometria e cinemática de placas oceânicas em subducção com base em vínculos geofísicos. Especificamente, concentrei minha atenção na subducção da placa de Nazca sob a litosfera continental da América do Sul, a uma latitude de 18ºS. Na primeira parte deste projeto, várias simulações numéricas foram feitas para estudar a flutuabilidade da placa de Nazca. Os resultados mostraram que, para uma litosfera oceânica relativamente mais espessa, a placa tende a defletir para baixo em relação à geometria observada da placa, mas resiste mais à flexão devido à sua rigidez. Já a crosta oceânica contribuiu para uma deflexão ascendente da placa em subducção, mesmo quando a densidade resultante de toda a placa era maior que a densidade do manto astenosférico circundante. A melhor combinação encontrada para a menor deflexão foi a de uma litosfera oceânica de 80 km com uma crosta oceânica de 8 km com uma densidade de 2800 kg/m3. Na segunda parte deste projeto, a placa de Nazca foi simulada por mais de 50 Myr para estudar sua estagnação próximo à transição para o manto inferior. Percebeu-se que o aumento da viscosidade por si só não pode explicar a horizontalização da placa em 660 km, pois a mudança de fase, induzindo um aumento da densidade no manto inferior, foi crítica para simular-se a estagnação de placas oceânicas acima do manto inferior.Biblioteca Digitais de Teses e Dissertações da USPSacek, VictorAssunção, Jamison Faustino Gomes de2019-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-03-17T16:34:02Zoai:teses.usp.br:tde-19022020-123910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-17T16:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach Topografia dinâmica e convecção mantélica induzidas pela subducção de litosfera oceânica: uma abordagem numérica |
title |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
spellingShingle |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach Assunção, Jamison Faustino Gomes de convecção do manto dynamic topography finite element method mantle convection método dos elementos finitos subdução da litosfera oceânica subduction of oceanic lithosphere topografia dinâmica |
title_short |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
title_full |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
title_fullStr |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
title_full_unstemmed |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
title_sort |
Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach |
author |
Assunção, Jamison Faustino Gomes de |
author_facet |
Assunção, Jamison Faustino Gomes de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sacek, Victor |
dc.contributor.author.fl_str_mv |
Assunção, Jamison Faustino Gomes de |
dc.subject.por.fl_str_mv |
convecção do manto dynamic topography finite element method mantle convection método dos elementos finitos subdução da litosfera oceânica subduction of oceanic lithosphere topografia dinâmica |
topic |
convecção do manto dynamic topography finite element method mantle convection método dos elementos finitos subdução da litosfera oceânica subduction of oceanic lithosphere topografia dinâmica |
description |
One of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/ |
url |
https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257127408631808 |