Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach

Detalhes bibliográficos
Autor(a) principal: Assunção, Jamison Faustino Gomes de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/
Resumo: One of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle.
id USP_8b0d14adfc888cb4ccfecad710c5e03a
oai_identifier_str oai:teses.usp.br:tde-19022020-123910
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approachTopografia dinâmica e convecção mantélica induzidas pela subducção de litosfera oceânica: uma abordagem numéricaconvecção do mantodynamic topographyfinite element methodmantle convectionmétodo dos elementos finitossubdução da litosfera oceânicasubduction of oceanic lithospheretopografia dinâmicaOne of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle.Uma das principais forças que guiam a tectônica de placas é induzida pela subducção da litosfera oceânica fria e densa, criando uma flutuabilidade negativa em relação ao manto mais quente adjacente. Esse movimento descendente perturba o padrão de fluxo principalmente no manto superior, afetando também o deslocamento vertical da superfície da Terra na escala de tempo geológica, fenômeno conhecido como topografia dinâmica. Devido à complexidade física desses processos, uma maneira natural de estudar a subducção de placas litosféricas é através do uso de modelos numéricos. O objetivo do presente trabalho é o desenvolvimento de cenários numéricos que reproduzam alguns dos principais aspectos observados sobre geometria e cinemática de placas oceânicas em subducção com base em vínculos geofísicos. Especificamente, concentrei minha atenção na subducção da placa de Nazca sob a litosfera continental da América do Sul, a uma latitude de 18ºS. Na primeira parte deste projeto, várias simulações numéricas foram feitas para estudar a flutuabilidade da placa de Nazca. Os resultados mostraram que, para uma litosfera oceânica relativamente mais espessa, a placa tende a defletir para baixo em relação à geometria observada da placa, mas resiste mais à flexão devido à sua rigidez. Já a crosta oceânica contribuiu para uma deflexão ascendente da placa em subducção, mesmo quando a densidade resultante de toda a placa era maior que a densidade do manto astenosférico circundante. A melhor combinação encontrada para a menor deflexão foi a de uma litosfera oceânica de 80 km com uma crosta oceânica de 8 km com uma densidade de 2800 kg/m3. Na segunda parte deste projeto, a placa de Nazca foi simulada por mais de 50 Myr para estudar sua estagnação próximo à transição para o manto inferior. Percebeu-se que o aumento da viscosidade por si só não pode explicar a horizontalização da placa em 660 km, pois a mudança de fase, induzindo um aumento da densidade no manto inferior, foi crítica para simular-se a estagnação de placas oceânicas acima do manto inferior.Biblioteca Digitais de Teses e Dissertações da USPSacek, VictorAssunção, Jamison Faustino Gomes de2019-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-03-17T16:34:02Zoai:teses.usp.br:tde-19022020-123910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-17T16:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
Topografia dinâmica e convecção mantélica induzidas pela subducção de litosfera oceânica: uma abordagem numérica
title Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
spellingShingle Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
Assunção, Jamison Faustino Gomes de
convecção do manto
dynamic topography
finite element method
mantle convection
método dos elementos finitos
subdução da litosfera oceânica
subduction of oceanic lithosphere
topografia dinâmica
title_short Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
title_full Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
title_fullStr Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
title_full_unstemmed Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
title_sort Dynamic topography and mantle convection induced by subduction of oceanic lithosphere: a numerical approach
author Assunção, Jamison Faustino Gomes de
author_facet Assunção, Jamison Faustino Gomes de
author_role author
dc.contributor.none.fl_str_mv Sacek, Victor
dc.contributor.author.fl_str_mv Assunção, Jamison Faustino Gomes de
dc.subject.por.fl_str_mv convecção do manto
dynamic topography
finite element method
mantle convection
método dos elementos finitos
subdução da litosfera oceânica
subduction of oceanic lithosphere
topografia dinâmica
topic convecção do manto
dynamic topography
finite element method
mantle convection
método dos elementos finitos
subdução da litosfera oceânica
subduction of oceanic lithosphere
topografia dinâmica
description One of the main forces that drive plate tectonics is induced by the subduction of cold and dense oceanic lithosphere, creating a negative buoyancy relative to the adjacent hotter mantle. This downward movement perturbs the flow pattern mainly in the upper mantle, also affecting the vertical displacement of the Earth\'s surface in the geological time scale, phenomenon known as dynamic topography. Due to the physical complexity of these processes, a natural way to study subduction of lithospheric plates is through the use of numerical models. The aim of the present work is the development of numerical scenarios that reproduce some of the main aspects observed about geometry and kinematics of oceanic plates in subduction based on geophysical constraints. Specifically, I focused my attention on the subduction of the Nazca plate under the continental lithosphere of South America, at a latitude of 18ºS. On the first part of this project, several numerical simulations were made to study the buoyancy of the Nazca plate. The results showed that for a relatively thicker oceanic lithosphere, the slab tends to deflect downwards, but it resists more to bending due to its rigidity. An opposing buoyant force produced by the oceanic crust contributed to an upward deflection of the subducting slab even when the resulting density of the entire slab was greater than the surrounding asthenospheric mantle density. The best combination found for the smallest deflection was that of an 80 km thick oceanic lithosphere with an 8 km thick oceanic crust with a density of 2800 kg/m3. On the second part of this project, the Nazca plate was simulated for more than 50 Myr to study its stagnation on the upper-to-lower mantle boundary. It was noticed that increasing the viscosity alone cannot explain slab flattening at 660 km, as phase change reflected by the increase in density was critical when studying slab penetration in the lower mantle.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/
url https://www.teses.usp.br/teses/disponiveis/14/14132/tde-19022020-123910/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257127408631808