Seleção de conteúdo referencial com base em traços de personalidade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/100/100131/tde-16102018-113303/ |
Resumo: | O presente trabalho traz um estudo no âmbito de Geração de Língua Natural, com ênfase na tarefa de Geração de Expressões de Referência (GER), a qual consiste em gerar expressões referenciais semelhantes às produzidas por humanos. Existem estudos que exploram o uso da variação individual do ser humano no aprendizado do padrão de seleção de conteúdo na construção de descrições, contudo, treinar tais conjuntos de dados é computacionalmente caro. O trabalho apresenta um modelo de seleção de conteúdo para GER, baseado em traços de personalidade, o qual generaliza padrões de comportamentos referenciais similares em cada perfil de personalidade. Na pesquisa também realizou-se um levantamento bibliográfico sobre o tema, e construiu-se um córpus com expressões de referência contendo informações de personalidade de cada participante, as quais foram anotadas tomando por base o modelo dos Cinco Grandes Fatores. Este córpus tem como finalidade ser utilizado como entrada tanto no modelo desenvolvido, como em outros estudos na área. Os resultados comprovam que modelos de GER dependentes da personalidade superam os algoritmos GER tradicionais, e que são uma alternativa viável em abordagens que dependam da variação de locutores |
id |
USP_8b5a990b83cbeba7b103c1e3047cb97a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16102018-113303 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Seleção de conteúdo referencial com base em traços de personalidadeSelection of referential content based on personality traitsBig FiveGeneration of Reference ExpressionsGeração de Expressões de ReferênciaModelo dos Cinco Grandes FatoresPersonality TraitsTraços de PersonalidadeO presente trabalho traz um estudo no âmbito de Geração de Língua Natural, com ênfase na tarefa de Geração de Expressões de Referência (GER), a qual consiste em gerar expressões referenciais semelhantes às produzidas por humanos. Existem estudos que exploram o uso da variação individual do ser humano no aprendizado do padrão de seleção de conteúdo na construção de descrições, contudo, treinar tais conjuntos de dados é computacionalmente caro. O trabalho apresenta um modelo de seleção de conteúdo para GER, baseado em traços de personalidade, o qual generaliza padrões de comportamentos referenciais similares em cada perfil de personalidade. Na pesquisa também realizou-se um levantamento bibliográfico sobre o tema, e construiu-se um córpus com expressões de referência contendo informações de personalidade de cada participante, as quais foram anotadas tomando por base o modelo dos Cinco Grandes Fatores. Este córpus tem como finalidade ser utilizado como entrada tanto no modelo desenvolvido, como em outros estudos na área. Os resultados comprovam que modelos de GER dependentes da personalidade superam os algoritmos GER tradicionais, e que são uma alternativa viável em abordagens que dependam da variação de locutoresThe present work presents a study in the field of Generation of Natural Language, with emphasis on the task of Generation of Reference Expressions (GER), which is to generate reference expressions similar to those produced by humans. There are studies that explore the use of individual human variation in learning the pattern of content selection in the construction of descriptions, however, training such datasets is computationally expensive. The paper presents a content selection model for GER based on personality traits, which generalizes patterns of similar referential behavior in each personality profile. The research also carried out a bibliographic survey on the subject, and a corpus was constructed with reference expressions containing personality information of each participant, which were annotated based on the model of the Five Great Factors. This corpus is intended to be used as an input in both the developed model and other studies in the area. The results show that personality-dependent GER models exceed traditional GER algorithms, and are a viable alternative in approaches that depend on the variation of speakersBiblioteca Digitais de Teses e Dissertações da USPParaboni, IvandreMonteiro, Danielle Sampaio2018-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-16102018-113303/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-16102018-113303Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Seleção de conteúdo referencial com base em traços de personalidade Selection of referential content based on personality traits |
title |
Seleção de conteúdo referencial com base em traços de personalidade |
spellingShingle |
Seleção de conteúdo referencial com base em traços de personalidade Monteiro, Danielle Sampaio Big Five Generation of Reference Expressions Geração de Expressões de Referência Modelo dos Cinco Grandes Fatores Personality Traits Traços de Personalidade |
title_short |
Seleção de conteúdo referencial com base em traços de personalidade |
title_full |
Seleção de conteúdo referencial com base em traços de personalidade |
title_fullStr |
Seleção de conteúdo referencial com base em traços de personalidade |
title_full_unstemmed |
Seleção de conteúdo referencial com base em traços de personalidade |
title_sort |
Seleção de conteúdo referencial com base em traços de personalidade |
author |
Monteiro, Danielle Sampaio |
author_facet |
Monteiro, Danielle Sampaio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paraboni, Ivandre |
dc.contributor.author.fl_str_mv |
Monteiro, Danielle Sampaio |
dc.subject.por.fl_str_mv |
Big Five Generation of Reference Expressions Geração de Expressões de Referência Modelo dos Cinco Grandes Fatores Personality Traits Traços de Personalidade |
topic |
Big Five Generation of Reference Expressions Geração de Expressões de Referência Modelo dos Cinco Grandes Fatores Personality Traits Traços de Personalidade |
description |
O presente trabalho traz um estudo no âmbito de Geração de Língua Natural, com ênfase na tarefa de Geração de Expressões de Referência (GER), a qual consiste em gerar expressões referenciais semelhantes às produzidas por humanos. Existem estudos que exploram o uso da variação individual do ser humano no aprendizado do padrão de seleção de conteúdo na construção de descrições, contudo, treinar tais conjuntos de dados é computacionalmente caro. O trabalho apresenta um modelo de seleção de conteúdo para GER, baseado em traços de personalidade, o qual generaliza padrões de comportamentos referenciais similares em cada perfil de personalidade. Na pesquisa também realizou-se um levantamento bibliográfico sobre o tema, e construiu-se um córpus com expressões de referência contendo informações de personalidade de cada participante, as quais foram anotadas tomando por base o modelo dos Cinco Grandes Fatores. Este córpus tem como finalidade ser utilizado como entrada tanto no modelo desenvolvido, como em outros estudos na área. Os resultados comprovam que modelos de GER dependentes da personalidade superam os algoritmos GER tradicionais, e que são uma alternativa viável em abordagens que dependam da variação de locutores |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-16102018-113303/ |
url |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-16102018-113303/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256512945192960 |