Seleção de modelos lineares mistos utilizando critérios de informação

Detalhes bibliográficos
Autor(a) principal: Yamanouchi, Tatiana Kazue
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08032018-131129/
Resumo: O modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho.
id USP_8bb21333045ab3c8b5c6c2b76e90b66e
oai_identifier_str oai:teses.usp.br:tde-08032018-131129
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Seleção de modelos lineares mistos utilizando critérios de informaçãoMixed linear model selection using information criterionCritério de informaçãoInformation criterionMixed modelsModel selectionModelos mistosSeleção de modelosSimulaçãoSimulationO modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho.The mixed model is commonly used in data of repeated measurements because of its flexibility to incorporate in the model the correlation existing between the observations measured in the same individual and the heterogeneity of variances of observations made over time. This model is composed of fixed effects, random effects and random error and with this in the selection of the mixed model it is often necessary to select the best components of the mixed model in such a way that it represents the data well. Information criteria are tools widely used in model selection, but there are not many studies that indicate how information criteria play out in the selection of fixed effects, random effects, and the covariance structure that makes up the random error. In this work, a simulation study was performed to evaluate the performance of the AIC, BIC and KIC information criteria in the selection of the components of the mixed model, measured by the TP (True positive Rate). In general, the information criteria performed well, that is, they had high TP rate in situations where the sample size is larger. In the selection of fixed effects and in the selection of the covariance structure, in almost all situations, the BIC criterion had a better performance in relation to the AIC and KIC criteria. In the selection of random effects no criterion had a good performance, except in the selection of Random effects in which it considers the compound symmetric structure, situation in which BIC had the best performance.Biblioteca Digitais de Teses e Dissertações da USPLima, Cesar Goncalves deYamanouchi, Tatiana Kazue2017-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-08032018-131129/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-08032018-131129Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Seleção de modelos lineares mistos utilizando critérios de informação
Mixed linear model selection using information criterion
title Seleção de modelos lineares mistos utilizando critérios de informação
spellingShingle Seleção de modelos lineares mistos utilizando critérios de informação
Yamanouchi, Tatiana Kazue
Critério de informação
Information criterion
Mixed models
Model selection
Modelos mistos
Seleção de modelos
Simulação
Simulation
title_short Seleção de modelos lineares mistos utilizando critérios de informação
title_full Seleção de modelos lineares mistos utilizando critérios de informação
title_fullStr Seleção de modelos lineares mistos utilizando critérios de informação
title_full_unstemmed Seleção de modelos lineares mistos utilizando critérios de informação
title_sort Seleção de modelos lineares mistos utilizando critérios de informação
author Yamanouchi, Tatiana Kazue
author_facet Yamanouchi, Tatiana Kazue
author_role author
dc.contributor.none.fl_str_mv Lima, Cesar Goncalves de
dc.contributor.author.fl_str_mv Yamanouchi, Tatiana Kazue
dc.subject.por.fl_str_mv Critério de informação
Information criterion
Mixed models
Model selection
Modelos mistos
Seleção de modelos
Simulação
Simulation
topic Critério de informação
Information criterion
Mixed models
Model selection
Modelos mistos
Seleção de modelos
Simulação
Simulation
description O modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08032018-131129/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08032018-131129/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256796011429888