Label operation for multi-label learning

Detalhes bibliográficos
Autor(a) principal: Silva, Adriano Rivolli da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082020-161950/
Resumo: Classification tasks in which instances are associated with multiple concepts are known as multilabel classification. They have attracted growing attention in the machine-learning community, given the high number of applications and multi-labeled data available nowadays. Consequently, many strategies have been proposed exploring different particularities, such as label imbalance, dimensionality reduction and labels dependence. Despite that, some aspects that may affect strategies as a whole have been overlooked. For instance, some strategies transform the original multi-labeled data into single-labeled data upon which a base algorithm can be applied. However, the impact of choosing a specific base algorithm against another is unknown and usually ignored. Moreover, it was observed that many labels are never correctly predicted regardless of the strategies used. So far, very little attention has been paid to theses issues, which may produce misleading results. Therefore, this thesis aims to investigate the multi-label strategies covering these particularities. For such, an extensive comparative study is performed focusing on the influence of the base algorithms on the results. Moreover, label operation is proposed as an optimization procedure able to reduce the number of labels never predicted. Through an empirical methodology, label expansion and reduction enhanced different evaluation measures, mitigating the label prediction problem, although it was not completely removed. Additionally, metalearning is used to reduce the complexity of the operations and to provide some understanding concerning the studied issue. Considering this, characterization measures for meta-learning were systematically investigated, which resulted in a new taxonomy to organize them. In summary, the findings and contributions presented here are relevant to the multi-label and meta-learning research fields. They potentially have an impact on the methodology, and raise open new questions concerning unnoticed aspects of these areas.
id USP_8bd43376e9c6386dccda8410520bf21f
oai_identifier_str oai:teses.usp.br:tde-18082020-161950
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Label operation for multi-label learningOperação de rótulo para o aprendizado multirrótuloLabel operationMeta-característicasMeta-featuresMeta-learningMulti-labelMultirrótuloOperação com rótulosProblem transformationTransformação de problema, Meta-aprendizadoClassification tasks in which instances are associated with multiple concepts are known as multilabel classification. They have attracted growing attention in the machine-learning community, given the high number of applications and multi-labeled data available nowadays. Consequently, many strategies have been proposed exploring different particularities, such as label imbalance, dimensionality reduction and labels dependence. Despite that, some aspects that may affect strategies as a whole have been overlooked. For instance, some strategies transform the original multi-labeled data into single-labeled data upon which a base algorithm can be applied. However, the impact of choosing a specific base algorithm against another is unknown and usually ignored. Moreover, it was observed that many labels are never correctly predicted regardless of the strategies used. So far, very little attention has been paid to theses issues, which may produce misleading results. Therefore, this thesis aims to investigate the multi-label strategies covering these particularities. For such, an extensive comparative study is performed focusing on the influence of the base algorithms on the results. Moreover, label operation is proposed as an optimization procedure able to reduce the number of labels never predicted. Through an empirical methodology, label expansion and reduction enhanced different evaluation measures, mitigating the label prediction problem, although it was not completely removed. Additionally, metalearning is used to reduce the complexity of the operations and to provide some understanding concerning the studied issue. Considering this, characterization measures for meta-learning were systematically investigated, which resulted in a new taxonomy to organize them. In summary, the findings and contributions presented here are relevant to the multi-label and meta-learning research fields. They potentially have an impact on the methodology, and raise open new questions concerning unnoticed aspects of these areas.Tarefas de classificação nas quais instâncias são associadas com múltiplos conceitos são conhecidas como classificação multirrótulo e devido ao alto número de aplicações e dados multirrótulos disponíveis atualmente, é grande o interesse deste assunto pela comunidade de aprendizado de máquina. Consequentemente, têm sido propostas muitas estratégias explorando diferentes particularidades desse tipo de tarefa como o desbalanceamento dos rótulos, redução de dimensionalidade e a dependência dos rótulos. No entanto, alguns aspectos que podem afetar tais estratégias são negligenciados, como as que transformam os dados multirótulos em dados monorótulos e utilizam um algoritmo base para resolver as subtarefas geradas. O impacto de se escolher um algoritmo específico em detrimento de outro é desconhecido e normalmente ignorado, assim como foi observado que muitos rótulos nunca são corretamente preditos, independentemente da estratégia utilizada. Estas questões não têm recebido a devida atenção, mesmo podendo produzir resultados enganosos, portanto, esta pesquisa tem por objetivo investigar as estratégias multirrótulos explorando essas particularidades. Para tanto, um extensivo estudo comparativo foi realizado, cujo foco é analisar a influência do algoritmo base nos resultados. Além disso, a operação de rótulo é proposta como uma estratégia de otimização capaz de reduzir o número de rótulos incorretamente preditos. Foi constatada, por meio de uma metodologia empírica, que as operações de expansão e redução dos rótulos melhoraram diferentes medidas de avaliação e reduziram o problema dos rótulos não preditos, embora não completamente. O metaaprendizado foi também investigado como forma de reduzir a complexidade das operações e prover algum entendimento sobre as questões estudadas. Com isso, as medidas de caracterização para meta-aprendizado foram sistematicamente investigadas, resultando em uma nova taxonomia para organizá-las. Desse modo, as desc obertas e contribuições apresentadas aqui são relevantes, principalmente, para a área de pesquisa em aprendizado multirrótulo e meta-aprendizado, assim como levantam novas questões relacionadas a aspectos despercebidos de tais áreas. A presente tese também tem potencial impacto na metodologia experimental desse tipo de pesquisa.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deSilva, Adriano Rivolli da2020-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082020-161950/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-18T22:28:02Zoai:teses.usp.br:tde-18082020-161950Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-18T22:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Label operation for multi-label learning
Operação de rótulo para o aprendizado multirrótulo
title Label operation for multi-label learning
spellingShingle Label operation for multi-label learning
Silva, Adriano Rivolli da
Label operation
Meta-características
Meta-features
Meta-learning
Multi-label
Multirrótulo
Operação com rótulos
Problem transformation
Transformação de problema, Meta-aprendizado
title_short Label operation for multi-label learning
title_full Label operation for multi-label learning
title_fullStr Label operation for multi-label learning
title_full_unstemmed Label operation for multi-label learning
title_sort Label operation for multi-label learning
author Silva, Adriano Rivolli da
author_facet Silva, Adriano Rivolli da
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Silva, Adriano Rivolli da
dc.subject.por.fl_str_mv Label operation
Meta-características
Meta-features
Meta-learning
Multi-label
Multirrótulo
Operação com rótulos
Problem transformation
Transformação de problema, Meta-aprendizado
topic Label operation
Meta-características
Meta-features
Meta-learning
Multi-label
Multirrótulo
Operação com rótulos
Problem transformation
Transformação de problema, Meta-aprendizado
description Classification tasks in which instances are associated with multiple concepts are known as multilabel classification. They have attracted growing attention in the machine-learning community, given the high number of applications and multi-labeled data available nowadays. Consequently, many strategies have been proposed exploring different particularities, such as label imbalance, dimensionality reduction and labels dependence. Despite that, some aspects that may affect strategies as a whole have been overlooked. For instance, some strategies transform the original multi-labeled data into single-labeled data upon which a base algorithm can be applied. However, the impact of choosing a specific base algorithm against another is unknown and usually ignored. Moreover, it was observed that many labels are never correctly predicted regardless of the strategies used. So far, very little attention has been paid to theses issues, which may produce misleading results. Therefore, this thesis aims to investigate the multi-label strategies covering these particularities. For such, an extensive comparative study is performed focusing on the influence of the base algorithms on the results. Moreover, label operation is proposed as an optimization procedure able to reduce the number of labels never predicted. Through an empirical methodology, label expansion and reduction enhanced different evaluation measures, mitigating the label prediction problem, although it was not completely removed. Additionally, metalearning is used to reduce the complexity of the operations and to provide some understanding concerning the studied issue. Considering this, characterization measures for meta-learning were systematically investigated, which resulted in a new taxonomy to organize them. In summary, the findings and contributions presented here are relevant to the multi-label and meta-learning research fields. They potentially have an impact on the methodology, and raise open new questions concerning unnoticed aspects of these areas.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082020-161950/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082020-161950/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257107004391424