Extremal and probabilistic problems in order types
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ |
Resumo: | A configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B and we denote this by B \\subset A. For a configuration B and a integer N, the extremal number ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} is the maximum size of a subset of [N]^2 without a copy of B. We give an upper bound for general and convex cases. A random N-set is a set obtained by randomly choosing N points uniformly and independently in the unit square. A configuration is n-universal if contains all order types in general position of size n. We obtain the threshold for the n-universal property up to a log log factor, that is, we obtain integers N_0 and N_1 with log log N_1=O(log log N_0) such that if N >> N_1 (N << N_0), then a random N-set is n-universal with probability tending to 1 (tending to 0). We also determine a bound for the probability of obtaining a random set without a copy of a fixed configuration. |
id |
USP_8bfcff6da5a91cfe5cd09be800403054 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25042019-000504 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Extremal and probabilistic problems in order typesProblemas extremais e probabilísticos em o-tiposCombinatóriaCombinatorial geometryCombinatoricsGeometria combinatóriaMétodos probabilísticosO-tiposOrder typesProbabilistic methodA configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B and we denote this by B \\subset A. For a configuration B and a integer N, the extremal number ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} is the maximum size of a subset of [N]^2 without a copy of B. We give an upper bound for general and convex cases. A random N-set is a set obtained by randomly choosing N points uniformly and independently in the unit square. A configuration is n-universal if contains all order types in general position of size n. We obtain the threshold for the n-universal property up to a log log factor, that is, we obtain integers N_0 and N_1 with log log N_1=O(log log N_0) such that if N >> N_1 (N << N_0), then a random N-set is n-universal with probability tending to 1 (tending to 0). We also determine a bound for the probability of obtaining a random set without a copy of a fixed configuration.Uma configuração é um conjunto finito de pontos no plano. Duas configurações possuem o mesmo o-tipo se existe uma bijeção entre elas que preserva a orientação de toda tripla orientada. Uma configuração A contém uma cópia da configuração B se algum subconjunto de A possui o mesmo o-tipo que B e denotamos este fato por B \\subset A. Para uma configuração B e um inteiro N, o número extremal ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} é o maior tamanho de um subconjunto de [N]^2 sem uma cópia de B. Neste trabalho, determinamos cotas superiores para o caso geral e para o caso convexo. Um N-conjunto aleatório é um conjunto obtido escolhendo N pontos uniformemente e independentemente ao acaso do quadrado unitário. Uma configuração é n-universal se contém todos os o-tipos de tamanho n. Determinamos o limiar da propriedade de um N-conjunto aleatório ser n-universal a menos de erros da ordem de log log, isto é, determinamos inteiros N_0 e N_1 com log log N_0=O(log log N_1) tais que se N >> N_1 (N << N_0), então o N-conjunto aleatório é n-universal com probabilidade tendendo a 1 (tendendo a 0). Também obtivemos cotas para a probabilidade de um conjunto aleatório não possuir determinado o-tipo.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuSales, Marcelo Tadeu de Sá Oliveira2018-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-06-07T18:00:23Zoai:teses.usp.br:tde-25042019-000504Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T18:00:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Extremal and probabilistic problems in order types Problemas extremais e probabilísticos em o-tipos |
title |
Extremal and probabilistic problems in order types |
spellingShingle |
Extremal and probabilistic problems in order types Sales, Marcelo Tadeu de Sá Oliveira Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method |
title_short |
Extremal and probabilistic problems in order types |
title_full |
Extremal and probabilistic problems in order types |
title_fullStr |
Extremal and probabilistic problems in order types |
title_full_unstemmed |
Extremal and probabilistic problems in order types |
title_sort |
Extremal and probabilistic problems in order types |
author |
Sales, Marcelo Tadeu de Sá Oliveira |
author_facet |
Sales, Marcelo Tadeu de Sá Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Kohayakawa, Yoshiharu |
dc.contributor.author.fl_str_mv |
Sales, Marcelo Tadeu de Sá Oliveira |
dc.subject.por.fl_str_mv |
Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method |
topic |
Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method |
description |
A configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B and we denote this by B \\subset A. For a configuration B and a integer N, the extremal number ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} is the maximum size of a subset of [N]^2 without a copy of B. We give an upper bound for general and convex cases. A random N-set is a set obtained by randomly choosing N points uniformly and independently in the unit square. A configuration is n-universal if contains all order types in general position of size n. We obtain the threshold for the n-universal property up to a log log factor, that is, we obtain integers N_0 and N_1 with log log N_1=O(log log N_0) such that if N >> N_1 (N << N_0), then a random N-set is n-universal with probability tending to 1 (tending to 0). We also determine a bound for the probability of obtaining a random set without a copy of a fixed configuration. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257327360540672 |