Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil

Detalhes bibliográficos
Autor(a) principal: Battisti, Rafael
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/
Resumo: The water deficit is a major factor responsible for the soybean yield gap in Southern Brazil and tends to increase under climate change. Crop models are a tool that differ on levels of complexity and performance and can be used to evaluate strategies to manage crops, according the climate conditions. Based on that, the aims of this study were: to assess five soybean crop models and their ensemble; to evaluate the sensitivity of these models to systematic changes in climate; to assess soybean adaptive traits to water deficit for current and future climate; and to evaluate how the crop management contribute to soybean yields under current and future climates. The crop models FAO - Agroecological Zone, AQUACROP, DSSAT CSM-CROPGRO-Soybean, APSIM Soybean, and MONICA were assessed. These crop models were calibrated using experimental data obtained during 2013/2014 growing season in different sites, sowing dates and crop conditions (rainfed and irrigated). For the sensitivity analysis was considered climate changes on air temperature, [CO2], rainfall and solar radiation. For adapting traits to drought, the soybean traits manipulated only in DSSAT CSM-CROPGRO-Soybean were deeper root depth, maximum fraction of shoot dry matter diverted to root growth under water stress, early reduction of transpiration, transpiration limited as a function of vapor pressure deficit, N2 fixation drought tolerance and reduced acceleration of grain filling period in response to water deficit. The crop management options strategies evaluated were irrigation, sowing date, cultivar maturity group and planting density. The estimated yield had root mean square error (RMSE) varying between 553 kg ha-1 and 650 kg ha-1, with d indices always higher than 0.90 for all models. The best performance was obtained when an ensemble of all models was considered, reducing yield RMSE to 262 kg ha-1. The crop models had different sensitivity level for climate scenario, reduction yield with temperature increase, higher rate of reduction of yield with lower rainfall than increase of yield with higher rainfall amount, different yields response with solar radiation changes due to baseline climate and model, and an asymptotic soybean response to increase of [CO2]. Combining the climate scenarios, the yield was affected mainly by reduction of rainfall (increase of solar radiation), while temperature and [CO2] interaction showed compensation effect on yield losses and gains. The trait deeper rooting profile had greater improvement in total production for the Southern Brazil, with increase of 3.3 % and 4.0 %, respectively, for the current and future climates. For soybean management, in most cases, the models showed that no crop management strategy has a clear tendency to result in better yields in the future if shift from the best management of current climate. This way, the crop models showed different performance against observed data, where the model parametrization and structure affected the response to alternatives managements to climate change. Although these uncertainties, crop models and their ensemble are an important tool to evaluate impact of climate change and alternatives to mitigation.
id USP_8c091712e1ef3dd6fd233c1309d6d475
oai_identifier_str oai:teses.usp.br:tde-03102016-162340
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern BrazilCalibração, incertezas e uso de modelos de simulação da soja para avaliar estratégias de mitigação aos efeitos das mudanças climáticas na região Centro-Sul do BrasilGlycine max L.Adaptação à secaAdaptation to droughtCenários de clima futuroComparação de modelosCrop managementFuture climate scenariosGlycine max L.Manejo de culturaMédia de modelosModels comparisonModels ensembleThe water deficit is a major factor responsible for the soybean yield gap in Southern Brazil and tends to increase under climate change. Crop models are a tool that differ on levels of complexity and performance and can be used to evaluate strategies to manage crops, according the climate conditions. Based on that, the aims of this study were: to assess five soybean crop models and their ensemble; to evaluate the sensitivity of these models to systematic changes in climate; to assess soybean adaptive traits to water deficit for current and future climate; and to evaluate how the crop management contribute to soybean yields under current and future climates. The crop models FAO - Agroecological Zone, AQUACROP, DSSAT CSM-CROPGRO-Soybean, APSIM Soybean, and MONICA were assessed. These crop models were calibrated using experimental data obtained during 2013/2014 growing season in different sites, sowing dates and crop conditions (rainfed and irrigated). For the sensitivity analysis was considered climate changes on air temperature, [CO2], rainfall and solar radiation. For adapting traits to drought, the soybean traits manipulated only in DSSAT CSM-CROPGRO-Soybean were deeper root depth, maximum fraction of shoot dry matter diverted to root growth under water stress, early reduction of transpiration, transpiration limited as a function of vapor pressure deficit, N2 fixation drought tolerance and reduced acceleration of grain filling period in response to water deficit. The crop management options strategies evaluated were irrigation, sowing date, cultivar maturity group and planting density. The estimated yield had root mean square error (RMSE) varying between 553 kg ha-1 and 650 kg ha-1, with d indices always higher than 0.90 for all models. The best performance was obtained when an ensemble of all models was considered, reducing yield RMSE to 262 kg ha-1. The crop models had different sensitivity level for climate scenario, reduction yield with temperature increase, higher rate of reduction of yield with lower rainfall than increase of yield with higher rainfall amount, different yields response with solar radiation changes due to baseline climate and model, and an asymptotic soybean response to increase of [CO2]. Combining the climate scenarios, the yield was affected mainly by reduction of rainfall (increase of solar radiation), while temperature and [CO2] interaction showed compensation effect on yield losses and gains. The trait deeper rooting profile had greater improvement in total production for the Southern Brazil, with increase of 3.3 % and 4.0 %, respectively, for the current and future climates. For soybean management, in most cases, the models showed that no crop management strategy has a clear tendency to result in better yields in the future if shift from the best management of current climate. This way, the crop models showed different performance against observed data, where the model parametrization and structure affected the response to alternatives managements to climate change. Although these uncertainties, crop models and their ensemble are an important tool to evaluate impact of climate change and alternatives to mitigation.O déficit hídrico é o principal fator causador de perda de produtividade para a soja no Centro-Sul do Brasil e tende a aumentar com as mudanças climáticas. Alternativas de mitigação podem ser avaliadas usando modelos de simulação de cultura, os quais diferem em nível de complexidade e desempenho. Baseado nisso, os objetivos desse estudo foram: avaliar cinco modelos de simulação para a soja e a média desses modelos; avaliar a sensibilidade dos modelos a mudança sistemática do clima; avaliar características adaptativas da soja ao déficit hídrico para o clima atual e futuro; e avaliar a resposta produtiva de manejos da soja para o clima atual e futuro. Os modelos utilizados foram FAO - Zona Agroecológica, AQUACROP, DSSAT CSM-CROPGRO-Soybean, APSIM Soybean e MONICA. Os modelos foram calibrados a partir de dados experimentais obtidos na safra 2013/2014 em diferentes locais e datas de semeadura sob condições irrigadas e de sequeiro. Na análise de sensibilidade foram modificadas a temperatura do ar, [CO2], chuva e radiação solar. Para as características de tolerância ao déficit hídrico foram manipulados, apenas no modelo DSSAT CSMCROPGRO- Soybean, a distribuição do sistema radicular, biomassa divergida para crescimento radicular sob déficit hídrico, redução antecipada da transpiração, limitação da transpiração em função do déficit de pressão de vapor, fixação de N2 sob déficit hídrico e redução da aceleração do ciclo devido ao déficit hídrico. Os manejos avaliados foram irrigação, data de semeadura, ciclo de cultivar e densidade de semeadura. A produtividade estimada obteve raiz do erro médio quadrático (REMQ) variando entre 553 kg ha-1 e 650 kg ha-1, com índice d acima de 0.90 para todos os modelos. O melhor desempenho foi obtido utilizando a média de todos os modelos, com REMQ de 262 kg ha-1. Os modelos obtiveram diferentes níveis de sensibilidade aos cenários climáticos, reduzindo a produtividade com aumento da temperatura, maior taxa de redução da produtividade com menor quantidade de chuva do que aumento de produtividade com maior quantidade de chuva, diferentes respostas com a mudança da radiação solar em função do clima local e do modelo, e resposta positiva assimptótica para o aumento da concentração de [CO2]. Quando combinado as mudanças dos cenários, a produtividade foi afetada principalmente pela redução da chuva (aumento da radiação solar), enquanto a mudança na temperatura e [CO2] mostrou compensação nas perdas e ganhos. A distribuição do sistema radicular foi o mecanismo de tolerância ao déficit hídrico com maior ganho de produtividade, representando ganho total na produção de 3,3 % e 4,0% para a região, respectivamente, para o clima atual e futuro. Para os manejos não se observou melhores resultados com a mudança do manejo para o futuro em relação a melhor condição para o clima atual. Desta forma, os modelos mostraram diferentes desempenho, em que a parametrização e a estrutura do modelo afetaram a resposta das alternativas avaliadas para mudanças climáticas. Apesar das incertezas, os modelos de cultura são uma importante ferramenta para avaliar o impacto e alternativas de mitigação as mudanças climáticas.Biblioteca Digitais de Teses e Dissertações da USPSentelhas, Paulo CesarBattisti, Rafael2016-08-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:03:48Zoai:teses.usp.br:tde-03102016-162340Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
Calibração, incertezas e uso de modelos de simulação da soja para avaliar estratégias de mitigação aos efeitos das mudanças climáticas na região Centro-Sul do Brasil
title Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
spellingShingle Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
Battisti, Rafael
Glycine max L.
Adaptação à seca
Adaptation to drought
Cenários de clima futuro
Comparação de modelos
Crop management
Future climate scenarios
Glycine max L.
Manejo de cultura
Média de modelos
Models comparison
Models ensemble
title_short Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
title_full Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
title_fullStr Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
title_full_unstemmed Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
title_sort Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil
author Battisti, Rafael
author_facet Battisti, Rafael
author_role author
dc.contributor.none.fl_str_mv Sentelhas, Paulo Cesar
dc.contributor.author.fl_str_mv Battisti, Rafael
dc.subject.por.fl_str_mv Glycine max L.
Adaptação à seca
Adaptation to drought
Cenários de clima futuro
Comparação de modelos
Crop management
Future climate scenarios
Glycine max L.
Manejo de cultura
Média de modelos
Models comparison
Models ensemble
topic Glycine max L.
Adaptação à seca
Adaptation to drought
Cenários de clima futuro
Comparação de modelos
Crop management
Future climate scenarios
Glycine max L.
Manejo de cultura
Média de modelos
Models comparison
Models ensemble
description The water deficit is a major factor responsible for the soybean yield gap in Southern Brazil and tends to increase under climate change. Crop models are a tool that differ on levels of complexity and performance and can be used to evaluate strategies to manage crops, according the climate conditions. Based on that, the aims of this study were: to assess five soybean crop models and their ensemble; to evaluate the sensitivity of these models to systematic changes in climate; to assess soybean adaptive traits to water deficit for current and future climate; and to evaluate how the crop management contribute to soybean yields under current and future climates. The crop models FAO - Agroecological Zone, AQUACROP, DSSAT CSM-CROPGRO-Soybean, APSIM Soybean, and MONICA were assessed. These crop models were calibrated using experimental data obtained during 2013/2014 growing season in different sites, sowing dates and crop conditions (rainfed and irrigated). For the sensitivity analysis was considered climate changes on air temperature, [CO2], rainfall and solar radiation. For adapting traits to drought, the soybean traits manipulated only in DSSAT CSM-CROPGRO-Soybean were deeper root depth, maximum fraction of shoot dry matter diverted to root growth under water stress, early reduction of transpiration, transpiration limited as a function of vapor pressure deficit, N2 fixation drought tolerance and reduced acceleration of grain filling period in response to water deficit. The crop management options strategies evaluated were irrigation, sowing date, cultivar maturity group and planting density. The estimated yield had root mean square error (RMSE) varying between 553 kg ha-1 and 650 kg ha-1, with d indices always higher than 0.90 for all models. The best performance was obtained when an ensemble of all models was considered, reducing yield RMSE to 262 kg ha-1. The crop models had different sensitivity level for climate scenario, reduction yield with temperature increase, higher rate of reduction of yield with lower rainfall than increase of yield with higher rainfall amount, different yields response with solar radiation changes due to baseline climate and model, and an asymptotic soybean response to increase of [CO2]. Combining the climate scenarios, the yield was affected mainly by reduction of rainfall (increase of solar radiation), while temperature and [CO2] interaction showed compensation effect on yield losses and gains. The trait deeper rooting profile had greater improvement in total production for the Southern Brazil, with increase of 3.3 % and 4.0 %, respectively, for the current and future climates. For soybean management, in most cases, the models showed that no crop management strategy has a clear tendency to result in better yields in the future if shift from the best management of current climate. This way, the crop models showed different performance against observed data, where the model parametrization and structure affected the response to alternatives managements to climate change. Although these uncertainties, crop models and their ensemble are an important tool to evaluate impact of climate change and alternatives to mitigation.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256699686092800