Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability

Detalhes bibliográficos
Autor(a) principal: Nóia Junior, Rogério de Souza
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23082019-153442/
Resumo: In the last decade, Brazilian soybean and maize, cultivated in succession, accounted for 23.8 ± 1.9% and 6.9 ± 0.9% of world\'s production, respectively. More than 80% of soybean and maize production in Brazil is under rainfed conditions, which results in a high interannual yield variability and, consequently, increasing the risks for food supply, not only in the country but also around the world. Among the natural phenomena that cause climate and yield variability in Brazil, El Niño Southern Oscillation (ENSO) is the most important. The best way to minimize the impacts of ENSO, mainly those associated to water deficit in rainfed crops, is by defining the most favorable sowing dates, when the probability of crop failure is small. Based on that, this study aimed: to determine the best sowing dates for the soybean-maize production system, based on the economic profitability at national scale; to assess the influence of the ENSO phases (El Niño, La Niña and Neutral) on spatial and temporal soybean and maize off-season yield variabilities for different sowing dates; and to determine the magnitude of the current soybean- maize succession yield gap due to water deficit and crop management in different Brazilian producing regions. To achieve such goals, soybean and maize off-season simulations were performed using three previously calibrated and validated crop simulation models (FAO-AZM, DSSAT and APSIM), in a multi-model approach. Soybean and maize yields were simulated for 29 locations in 12 states, with soybean sowing dates ranging from 21st September to 1st January, for a period of 34 years (1980-2013). Maize sowings were simulated in the same day soybean was harvested. The optimal sowing dates for soybean-maize succession varied according to the Brazilian region, with water deficit, solar radiation and air temperature being the main weather variables that influenced this crop system. ENSO phases affected soybean and maize yields across the country, having, in general, opposite effects during the warm (El Niño) and cold (La Niña) phases, but also depending on the sowing date considered. The yield gap (YG) of soybean-maize succession varied among locations, sowing dates and growing seasons. However, the yield gaps caused by water deficit (YGw) were, on average, higher than those caused by sub-optimal crop management (YGm), which can be explained by the high inter-annual and spatial climate variability observed in the Brazilian territory.
id USP_8c7a7b6aa63c91853bbc3de7dba50957
oai_identifier_str oai:teses.usp.br:tde-23082019-153442
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitabilitySoja e milho safrinha cultivados em sucessão: impactos da variabilidade climática na produtividade e rentabilidadeAtingível e realAttainable and actual crop yieldCrop managementCrop modelingDéficit hídricoManejo de culturas agrícolasModelagem de crescimento de culturaPotentialProdutividade potencialWater deficitIn the last decade, Brazilian soybean and maize, cultivated in succession, accounted for 23.8 ± 1.9% and 6.9 ± 0.9% of world\'s production, respectively. More than 80% of soybean and maize production in Brazil is under rainfed conditions, which results in a high interannual yield variability and, consequently, increasing the risks for food supply, not only in the country but also around the world. Among the natural phenomena that cause climate and yield variability in Brazil, El Niño Southern Oscillation (ENSO) is the most important. The best way to minimize the impacts of ENSO, mainly those associated to water deficit in rainfed crops, is by defining the most favorable sowing dates, when the probability of crop failure is small. Based on that, this study aimed: to determine the best sowing dates for the soybean-maize production system, based on the economic profitability at national scale; to assess the influence of the ENSO phases (El Niño, La Niña and Neutral) on spatial and temporal soybean and maize off-season yield variabilities for different sowing dates; and to determine the magnitude of the current soybean- maize succession yield gap due to water deficit and crop management in different Brazilian producing regions. To achieve such goals, soybean and maize off-season simulations were performed using three previously calibrated and validated crop simulation models (FAO-AZM, DSSAT and APSIM), in a multi-model approach. Soybean and maize yields were simulated for 29 locations in 12 states, with soybean sowing dates ranging from 21st September to 1st January, for a period of 34 years (1980-2013). Maize sowings were simulated in the same day soybean was harvested. The optimal sowing dates for soybean-maize succession varied according to the Brazilian region, with water deficit, solar radiation and air temperature being the main weather variables that influenced this crop system. ENSO phases affected soybean and maize yields across the country, having, in general, opposite effects during the warm (El Niño) and cold (La Niña) phases, but also depending on the sowing date considered. The yield gap (YG) of soybean-maize succession varied among locations, sowing dates and growing seasons. However, the yield gaps caused by water deficit (YGw) were, on average, higher than those caused by sub-optimal crop management (YGm), which can be explained by the high inter-annual and spatial climate variability observed in the Brazilian territory.Na última década, a soja e o milho safrinha, cultivados em sucessão no Brasil, contribuíram com 23.8 ± 1.9% e 6.9 ± 0.9% da produção mundial, respectivamente. Mais de 80% da soja e do milho brasileiro são produzidos em condições de sequeiro, o que resulta em uma alta variabilidade interanual da produtividade e, consequentemente, aumenta os riscos de falhas no abastecimento alimentar no Brasil e no mundo. Entre os fenômenos causadores da variabilidade climática e da produtividade agrícola no Brasil, o El Niño Oscilação Sul (ENOS) é o mais importante. A melhor maneira para minimizar os impactos do ENOS, principalmente os associados ao déficit hídrico em culturas de sequeiro, é definindo as datas de semeaduras mais favoráveis, onde as chances de grandes perdas são menores. Assim, os objetivos deste estudo foram: determinar a melhor data de semeadura para o sistema de produção em sucessão soja - milho safrinha, baseado na rentabilidade econômica em escala nacional; indicar a influência das fases do ENOS (El Niño, La Niña e Neutro) sobre a sucessão soja - milho safrinha em escala espacial e temporal, em diferentes datas de semeaduras; e determinar a magnitude da quebra de produtividade da sucessão soja - milho safrinha devido ao déficit hídrico e ao manejo sub ótimo do cultivo. Para atingir os objetivos, simulações de produtividade para soja e milho safrinha foram realizadas usando três modelos de simulação de cultura (FAO-AZM, DSSAT e APSIM), previamente calibrados, em uma abordagem multi-modelos. As produtividades das culturas da soja e do milho foram simuladas para 29 locais em 12 estados, com as datas de semeadura da soja variando de 21 de setembro a 1º de janeiro, para um período de 34 anos (1980-2013). A semeadura do milho ocorreu imediatamente após a colheita da soja. A data de semeadura ótima para a sucessão soja - milho safrinha variou de acordo com a região brasileira, tendo o déficit hídrico, radiação solar e a temperatura do ar como as principais variáveis que influenciam o sistema. As fases do ENOS afetaram a produtividade da soja e do milho safrinha no Brasil, tendo, efeitos opostos durante as fases quentes (El Niño) e frias (La Niña). Os impactos das fases do ENOS também variaram de acordo com as datas de semeadura. As quebras de produtividade da sucessão soja - milho safrinha variaram entre os locais, datas de semeadura e safras. Entretanto, as quebras de produtividade causadas pelo déficit hídrico foram, em média, superiores àquelas causadas pelo manejo subótimo das culturas, o que pode ser explicado pela alta variabilidade espacial e interanual das condições meteorológicas no território brasileiro.Biblioteca Digitais de Teses e Dissertações da USPSentelhas, Paulo CesarNóia Junior, Rogério de Souza2019-07-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-23082019-153442/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T23:46:08Zoai:teses.usp.br:tde-23082019-153442Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:46:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
Soja e milho safrinha cultivados em sucessão: impactos da variabilidade climática na produtividade e rentabilidade
title Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
spellingShingle Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
Nóia Junior, Rogério de Souza
Atingível e real
Attainable and actual crop yield
Crop management
Crop modeling
Déficit hídrico
Manejo de culturas agrícolas
Modelagem de crescimento de cultura
Potential
Produtividade potencial
Water deficit
title_short Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
title_full Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
title_fullStr Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
title_full_unstemmed Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
title_sort Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability
author Nóia Junior, Rogério de Souza
author_facet Nóia Junior, Rogério de Souza
author_role author
dc.contributor.none.fl_str_mv Sentelhas, Paulo Cesar
dc.contributor.author.fl_str_mv Nóia Junior, Rogério de Souza
dc.subject.por.fl_str_mv Atingível e real
Attainable and actual crop yield
Crop management
Crop modeling
Déficit hídrico
Manejo de culturas agrícolas
Modelagem de crescimento de cultura
Potential
Produtividade potencial
Water deficit
topic Atingível e real
Attainable and actual crop yield
Crop management
Crop modeling
Déficit hídrico
Manejo de culturas agrícolas
Modelagem de crescimento de cultura
Potential
Produtividade potencial
Water deficit
description In the last decade, Brazilian soybean and maize, cultivated in succession, accounted for 23.8 ± 1.9% and 6.9 ± 0.9% of world\'s production, respectively. More than 80% of soybean and maize production in Brazil is under rainfed conditions, which results in a high interannual yield variability and, consequently, increasing the risks for food supply, not only in the country but also around the world. Among the natural phenomena that cause climate and yield variability in Brazil, El Niño Southern Oscillation (ENSO) is the most important. The best way to minimize the impacts of ENSO, mainly those associated to water deficit in rainfed crops, is by defining the most favorable sowing dates, when the probability of crop failure is small. Based on that, this study aimed: to determine the best sowing dates for the soybean-maize production system, based on the economic profitability at national scale; to assess the influence of the ENSO phases (El Niño, La Niña and Neutral) on spatial and temporal soybean and maize off-season yield variabilities for different sowing dates; and to determine the magnitude of the current soybean- maize succession yield gap due to water deficit and crop management in different Brazilian producing regions. To achieve such goals, soybean and maize off-season simulations were performed using three previously calibrated and validated crop simulation models (FAO-AZM, DSSAT and APSIM), in a multi-model approach. Soybean and maize yields were simulated for 29 locations in 12 states, with soybean sowing dates ranging from 21st September to 1st January, for a period of 34 years (1980-2013). Maize sowings were simulated in the same day soybean was harvested. The optimal sowing dates for soybean-maize succession varied according to the Brazilian region, with water deficit, solar radiation and air temperature being the main weather variables that influenced this crop system. ENSO phases affected soybean and maize yields across the country, having, in general, opposite effects during the warm (El Niño) and cold (La Niña) phases, but also depending on the sowing date considered. The yield gap (YG) of soybean-maize succession varied among locations, sowing dates and growing seasons. However, the yield gaps caused by water deficit (YGw) were, on average, higher than those caused by sub-optimal crop management (YGm), which can be explained by the high inter-annual and spatial climate variability observed in the Brazilian territory.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23082019-153442/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23082019-153442/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257369579356160