Decomposição de séries temporais preservando o viés determinístico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032020-170344/ |
Resumo: | Avanços tecnológicos possibilitaram a coleta e modelagem de grandes quantidades de dados produzidos ao longo do tempo por fenômenos industriais, humanos e naturais. Em se tratando de séries temporais, tais dados são compostos por influências determinísticas, relacionadas a eventos recorrentes e unicamente dependentes de observações passadas, e estocásticas, associadas a efeitos aleatórios. Modelos produzidos com base em apenas uma dessas influências tendem a produzir resultados sub-ótimos e incompletos. Portanto, idealmente, deve-se modelar o componente estocástico por meio de ferramentas estatísticas e o determinístico utilizando ferramentas da área de Sistemas Dinâmicos. Esse cenário leva à inerente necessidade da decomposição de dados temporais, em busca de modelos mais acurados e melhores resultados de predição. Diversas abordagens têm sido utilizadas para realizar tal decomposição, tais como: (i) Transformada de Fourier; (ii) Transformadas Wavelet; (iii) Médias Móveis; (iv) Análise Espectral Singular; (v) Lazy; (vi) GHKSS; e (vii) outras abordagens baseadas no método de decomposição de modo empírico (EMD Empirical Mode Decomposition). Tais abordagens apresentam problemas associados à imposição de viés definido pelos seus conjuntos de funções admissíveis, sendo que o senoidal é predominante sobre o componente determinístico resultante, descaracterizando o viés original dos dados e levando a modelagens sub-ótimas, consequentemente gerando resultados insatisfatórios para o processo de predição. Neste contexto, esta tese de doutorado introduz três abordagens de decomposição de séries temporais que visam preservar, ao máximo, as influências determinísticas por meio da utilização de espaços-fase, resultando em representações mais fiéis do viés original dos dados: (i) Spring, (ii) Spring Time Domain e (iii) Spring*. Essas abordagens foram experimentalmente avaliadas e comparadas ao estado da arte com base em métricas comumente adotadas na literatura, mais precisamente: Média do Erro Absoluto (do inglês Mean Absolute Error MAE) e Distância Média da Linha Diagonal (do inglês Mean Distance from Diagonal Line MDDL). Spring e suas variantes comprovaram ser mais eficazes para a segmentação entre influências determinísticas e estocásticas, naturalmente levando à melhoria do processo de modelagem e predição de séries temporais. Por fim, para validar a hipótese de que as decomposições propostas melhoram resultados de predição, as abordagens foram conectadas às técnicas de modelagem polinomial e de funções de base radial, permitindo reduzir significativamente erros decorrentes do processo de previsão. |
id |
USP_8d03bba318bf6fa88ad145f409ba8df9 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16032020-170344 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Decomposição de séries temporais preservando o viés determinísticoTime series decomposition while preserving deterministic influencesAnálise de séries temporaisDecomposição de séries temporaisPredição de séries temporaisSéries temporaisTime seriesTime series analysisTime series decompositionTime series predictionAvanços tecnológicos possibilitaram a coleta e modelagem de grandes quantidades de dados produzidos ao longo do tempo por fenômenos industriais, humanos e naturais. Em se tratando de séries temporais, tais dados são compostos por influências determinísticas, relacionadas a eventos recorrentes e unicamente dependentes de observações passadas, e estocásticas, associadas a efeitos aleatórios. Modelos produzidos com base em apenas uma dessas influências tendem a produzir resultados sub-ótimos e incompletos. Portanto, idealmente, deve-se modelar o componente estocástico por meio de ferramentas estatísticas e o determinístico utilizando ferramentas da área de Sistemas Dinâmicos. Esse cenário leva à inerente necessidade da decomposição de dados temporais, em busca de modelos mais acurados e melhores resultados de predição. Diversas abordagens têm sido utilizadas para realizar tal decomposição, tais como: (i) Transformada de Fourier; (ii) Transformadas Wavelet; (iii) Médias Móveis; (iv) Análise Espectral Singular; (v) Lazy; (vi) GHKSS; e (vii) outras abordagens baseadas no método de decomposição de modo empírico (EMD Empirical Mode Decomposition). Tais abordagens apresentam problemas associados à imposição de viés definido pelos seus conjuntos de funções admissíveis, sendo que o senoidal é predominante sobre o componente determinístico resultante, descaracterizando o viés original dos dados e levando a modelagens sub-ótimas, consequentemente gerando resultados insatisfatórios para o processo de predição. Neste contexto, esta tese de doutorado introduz três abordagens de decomposição de séries temporais que visam preservar, ao máximo, as influências determinísticas por meio da utilização de espaços-fase, resultando em representações mais fiéis do viés original dos dados: (i) Spring, (ii) Spring Time Domain e (iii) Spring*. Essas abordagens foram experimentalmente avaliadas e comparadas ao estado da arte com base em métricas comumente adotadas na literatura, mais precisamente: Média do Erro Absoluto (do inglês Mean Absolute Error MAE) e Distância Média da Linha Diagonal (do inglês Mean Distance from Diagonal Line MDDL). Spring e suas variantes comprovaram ser mais eficazes para a segmentação entre influências determinísticas e estocásticas, naturalmente levando à melhoria do processo de modelagem e predição de séries temporais. Por fim, para validar a hipótese de que as decomposições propostas melhoram resultados de predição, as abordagens foram conectadas às técnicas de modelagem polinomial e de funções de base radial, permitindo reduzir significativamente erros decorrentes do processo de previsão.Technological advances allowed to collect and model large scales of data produced along time by industrial, human and natural phenomena. In terms of time series, such data are composed of deterministic, solely based on past observations or associated to recurrent events, and stochastic influences, due to random effects. Models using only one of those influences tend to produce suboptimal and incomplete results. Therefore, one should ideally model the stochastic component using Statistical tools and the deterministic one with Dynamical Systems. This scenario leads us to the decomposition of time series in attempt to obtain more accurate models and best prediction results. Several approaches have been applied to address such decomposition stage, including: (i) Fourier Transform; (ii) Wavelet Transform; (iii) Moving Average; (iv) Singular Spectrum Analysis; (v) Lazy; (vi) GHKSS; and (vii) other approaches based on the Empirical Mode Decomposition (EMD). Those approaches have drawbacks related to the bias imposed by their respective sets of admissible functions, having the sinusoidal as the typical to represent the deterministic component extracted, thus loosing the original time series bias, what leads to sub-optimal models and insatisfactory prediction results. In this context, this PhD thesis introduces three time series decompositions approaches that aim to preserve as much as possible the deterministic influences by using phase-spaces, what helps maintaining the original data bias, to mention: (i) Spring, (ii) Spring Time Domain e (iii) Spring*. Those approaches were experimentally assessed and compared against the state-of-the-art through measurements commonly used in the literature, more precisely: Mean Absolute Error (MAE) and Mean Distance from Diagonal Line (MDDL). Spring and its variations confirmed to be more effective to separate deterministic and stochastic influences, thus improving the modeling and prediction processes. At last, the proposed decomposition approaches were plugged into the polynomial and the radial basis function prediction techniques to confirm the hypothesis that the forecasting of series observations could be more accurate what was corroborated given errors were overall reduced.Biblioteca Digitais de Teses e Dissertações da USPHruschka, Eduardo RaulMello, Rodrigo Fernandes deDuarte, Felipe Simões Lage Gomes2020-01-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032020-170344/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-03-16T23:09:02Zoai:teses.usp.br:tde-16032020-170344Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-16T23:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Decomposição de séries temporais preservando o viés determinístico Time series decomposition while preserving deterministic influences |
title |
Decomposição de séries temporais preservando o viés determinístico |
spellingShingle |
Decomposição de séries temporais preservando o viés determinístico Duarte, Felipe Simões Lage Gomes Análise de séries temporais Decomposição de séries temporais Predição de séries temporais Séries temporais Time series Time series analysis Time series decomposition Time series prediction |
title_short |
Decomposição de séries temporais preservando o viés determinístico |
title_full |
Decomposição de séries temporais preservando o viés determinístico |
title_fullStr |
Decomposição de séries temporais preservando o viés determinístico |
title_full_unstemmed |
Decomposição de séries temporais preservando o viés determinístico |
title_sort |
Decomposição de séries temporais preservando o viés determinístico |
author |
Duarte, Felipe Simões Lage Gomes |
author_facet |
Duarte, Felipe Simões Lage Gomes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Hruschka, Eduardo Raul Mello, Rodrigo Fernandes de |
dc.contributor.author.fl_str_mv |
Duarte, Felipe Simões Lage Gomes |
dc.subject.por.fl_str_mv |
Análise de séries temporais Decomposição de séries temporais Predição de séries temporais Séries temporais Time series Time series analysis Time series decomposition Time series prediction |
topic |
Análise de séries temporais Decomposição de séries temporais Predição de séries temporais Séries temporais Time series Time series analysis Time series decomposition Time series prediction |
description |
Avanços tecnológicos possibilitaram a coleta e modelagem de grandes quantidades de dados produzidos ao longo do tempo por fenômenos industriais, humanos e naturais. Em se tratando de séries temporais, tais dados são compostos por influências determinísticas, relacionadas a eventos recorrentes e unicamente dependentes de observações passadas, e estocásticas, associadas a efeitos aleatórios. Modelos produzidos com base em apenas uma dessas influências tendem a produzir resultados sub-ótimos e incompletos. Portanto, idealmente, deve-se modelar o componente estocástico por meio de ferramentas estatísticas e o determinístico utilizando ferramentas da área de Sistemas Dinâmicos. Esse cenário leva à inerente necessidade da decomposição de dados temporais, em busca de modelos mais acurados e melhores resultados de predição. Diversas abordagens têm sido utilizadas para realizar tal decomposição, tais como: (i) Transformada de Fourier; (ii) Transformadas Wavelet; (iii) Médias Móveis; (iv) Análise Espectral Singular; (v) Lazy; (vi) GHKSS; e (vii) outras abordagens baseadas no método de decomposição de modo empírico (EMD Empirical Mode Decomposition). Tais abordagens apresentam problemas associados à imposição de viés definido pelos seus conjuntos de funções admissíveis, sendo que o senoidal é predominante sobre o componente determinístico resultante, descaracterizando o viés original dos dados e levando a modelagens sub-ótimas, consequentemente gerando resultados insatisfatórios para o processo de predição. Neste contexto, esta tese de doutorado introduz três abordagens de decomposição de séries temporais que visam preservar, ao máximo, as influências determinísticas por meio da utilização de espaços-fase, resultando em representações mais fiéis do viés original dos dados: (i) Spring, (ii) Spring Time Domain e (iii) Spring*. Essas abordagens foram experimentalmente avaliadas e comparadas ao estado da arte com base em métricas comumente adotadas na literatura, mais precisamente: Média do Erro Absoluto (do inglês Mean Absolute Error MAE) e Distância Média da Linha Diagonal (do inglês Mean Distance from Diagonal Line MDDL). Spring e suas variantes comprovaram ser mais eficazes para a segmentação entre influências determinísticas e estocásticas, naturalmente levando à melhoria do processo de modelagem e predição de séries temporais. Por fim, para validar a hipótese de que as decomposições propostas melhoram resultados de predição, as abordagens foram conectadas às técnicas de modelagem polinomial e de funções de base radial, permitindo reduzir significativamente erros decorrentes do processo de previsão. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032020-170344/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16032020-170344/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090763707908096 |