Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos

Detalhes bibliográficos
Autor(a) principal: Martarelli, Nádia Junqueira
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18156/tde-05102016-134559/
Resumo: Com o surgimento da tecnologia da informação, o processo de análise e interpretação de dados deixou de ser executado exclusivamente por seres humanos, passando a contar com auxílio computacional para a descoberta de conhecimento em grandes bancos de dados. Este auxílio exige uma organização e ordenação das atividades, antes manualmente exercidas, em um processo composto de três grandes etapas. A primeira etapa deste processo conta com uma tarefa de redução da dimensionalidade, que tem como objetivo a eliminação de atributos que não contribuem para a análise dos dados, resultando portanto, na seleção de um subconjunto dos atributos originais. A seleção de um subconjunto de atributos pode ser encarada como um problema de busca, já que há inúmeras possibilidades de combinação dos atributos originais em subconjuntos. Dessa forma, uma das estratégias de busca que pode ser adotada consiste na busca randômica, executada por um algoritmo genético ou pelas suas variações. Este trabalho propõe a aplicação de duas variações do algoritmo genético, Algoritmo Genético Construtivo e Algoritmo Genético Enviesado com Chave Aleatória, no problema de seleção de atributos em agrupamento de dados, já que estas duas variações ainda não foram aplicadas em tal problema. A fim de verificar o desempenho destas duas variações, comparou-se ambas com a abordagem tradicional do algoritmo genético. Efetuou-se também a comparação entre as duas variações. Para isto, foi utilizada três bases de dados retiradas do repositório UCI de aprendizado de máquinas. Os resultados obtidos mostraram que os desempenhos, em termos de qualidade da solução, dos algoritmos: genético construtivo e genético enviesado com chave aleatório foram melhores, de maneira geral, do que o desempenho da abordagem tradicional. Constatou-se também diferença significativa em termos de eficiência entre as duas variações e a abordagem tradicional.
id USP_8de97ba6cb531d2d56a3006d779e50e0
oai_identifier_str oai:teses.usp.br:tde-05102016-134559
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivosFeature subset selection in data clustering using evolutionary algorithmAgrupamento de dadosAlgoritmos evolutivosAlgoritmos genéticosClustering dataEvolutionary algorithmFeature subset selectionGenetic algorithmsSeleção de atributosCom o surgimento da tecnologia da informação, o processo de análise e interpretação de dados deixou de ser executado exclusivamente por seres humanos, passando a contar com auxílio computacional para a descoberta de conhecimento em grandes bancos de dados. Este auxílio exige uma organização e ordenação das atividades, antes manualmente exercidas, em um processo composto de três grandes etapas. A primeira etapa deste processo conta com uma tarefa de redução da dimensionalidade, que tem como objetivo a eliminação de atributos que não contribuem para a análise dos dados, resultando portanto, na seleção de um subconjunto dos atributos originais. A seleção de um subconjunto de atributos pode ser encarada como um problema de busca, já que há inúmeras possibilidades de combinação dos atributos originais em subconjuntos. Dessa forma, uma das estratégias de busca que pode ser adotada consiste na busca randômica, executada por um algoritmo genético ou pelas suas variações. Este trabalho propõe a aplicação de duas variações do algoritmo genético, Algoritmo Genético Construtivo e Algoritmo Genético Enviesado com Chave Aleatória, no problema de seleção de atributos em agrupamento de dados, já que estas duas variações ainda não foram aplicadas em tal problema. A fim de verificar o desempenho destas duas variações, comparou-se ambas com a abordagem tradicional do algoritmo genético. Efetuou-se também a comparação entre as duas variações. Para isto, foi utilizada três bases de dados retiradas do repositório UCI de aprendizado de máquinas. Os resultados obtidos mostraram que os desempenhos, em termos de qualidade da solução, dos algoritmos: genético construtivo e genético enviesado com chave aleatório foram melhores, de maneira geral, do que o desempenho da abordagem tradicional. Constatou-se também diferença significativa em termos de eficiência entre as duas variações e a abordagem tradicional.With the advent of information technology, the process of analysis and interpretation of data left to be run exclusively by humans, going to rely on computational support for knowledge discovery in large databases. This aid requires an organization and sequencing of activities before manually performed in a compound of three major step process. The first step of this process has a reduced dimensionality task, which aims to eliminate attributes that do not contribute to the data analysis, resulting therefore, in selecting a subset of the original attributes. Selecting a subset of attributes can be viewed as a search problem, since there are numerous possible combinations of unique attributes into subsets. Thus, one search strategies that can be adopted is to randomly search, performed by a genetic algorithm or its variants. This paper proposes the application of two variations of the genetic algorithm, Constructive Genetic Algorithm and Biased Random Key Genetic Algorithm in the feature selection problem in data grouping, as these two variations have not been applied in such a problem. In order to verify the performance of the two variations, we compare them with the traditional algorithm, genetic algorithm. It was also executed the comparison between the two variations. For this, we used three databases removed from the UCI repository of machine learning. The results showed that the performance, in term of quality solution, of algorithms: genetic constructive and genetic biased with random key are better than the performance of the traditional approach. It was also observed a significant difference in efficiency between of the two variations and the traditional approach.Biblioteca Digitais de Teses e Dissertações da USPNagano, Marcelo SeidoMartarelli, Nádia Junqueira2016-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18156/tde-05102016-134559/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:03:47Zoai:teses.usp.br:tde-05102016-134559Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
Feature subset selection in data clustering using evolutionary algorithm
title Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
spellingShingle Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
Martarelli, Nádia Junqueira
Agrupamento de dados
Algoritmos evolutivos
Algoritmos genéticos
Clustering data
Evolutionary algorithm
Feature subset selection
Genetic algorithms
Seleção de atributos
title_short Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
title_full Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
title_fullStr Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
title_full_unstemmed Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
title_sort Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
author Martarelli, Nádia Junqueira
author_facet Martarelli, Nádia Junqueira
author_role author
dc.contributor.none.fl_str_mv Nagano, Marcelo Seido
dc.contributor.author.fl_str_mv Martarelli, Nádia Junqueira
dc.subject.por.fl_str_mv Agrupamento de dados
Algoritmos evolutivos
Algoritmos genéticos
Clustering data
Evolutionary algorithm
Feature subset selection
Genetic algorithms
Seleção de atributos
topic Agrupamento de dados
Algoritmos evolutivos
Algoritmos genéticos
Clustering data
Evolutionary algorithm
Feature subset selection
Genetic algorithms
Seleção de atributos
description Com o surgimento da tecnologia da informação, o processo de análise e interpretação de dados deixou de ser executado exclusivamente por seres humanos, passando a contar com auxílio computacional para a descoberta de conhecimento em grandes bancos de dados. Este auxílio exige uma organização e ordenação das atividades, antes manualmente exercidas, em um processo composto de três grandes etapas. A primeira etapa deste processo conta com uma tarefa de redução da dimensionalidade, que tem como objetivo a eliminação de atributos que não contribuem para a análise dos dados, resultando portanto, na seleção de um subconjunto dos atributos originais. A seleção de um subconjunto de atributos pode ser encarada como um problema de busca, já que há inúmeras possibilidades de combinação dos atributos originais em subconjuntos. Dessa forma, uma das estratégias de busca que pode ser adotada consiste na busca randômica, executada por um algoritmo genético ou pelas suas variações. Este trabalho propõe a aplicação de duas variações do algoritmo genético, Algoritmo Genético Construtivo e Algoritmo Genético Enviesado com Chave Aleatória, no problema de seleção de atributos em agrupamento de dados, já que estas duas variações ainda não foram aplicadas em tal problema. A fim de verificar o desempenho destas duas variações, comparou-se ambas com a abordagem tradicional do algoritmo genético. Efetuou-se também a comparação entre as duas variações. Para isto, foi utilizada três bases de dados retiradas do repositório UCI de aprendizado de máquinas. Os resultados obtidos mostraram que os desempenhos, em termos de qualidade da solução, dos algoritmos: genético construtivo e genético enviesado com chave aleatório foram melhores, de maneira geral, do que o desempenho da abordagem tradicional. Constatou-se também diferença significativa em termos de eficiência entre as duas variações e a abordagem tradicional.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18156/tde-05102016-134559/
url http://www.teses.usp.br/teses/disponiveis/18/18156/tde-05102016-134559/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256746404347904