Análise de viés em notícias na língua portuguesa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/ |
Resumo: | O projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notícias |
id |
USP_900ca2cb51866c5dd03b99da2f0bd7dc |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10012016-144315 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de viés em notícias na língua portuguesaBias analysis on newswire in portugueseAnálise de sentimentosBiasDetecção de outliersOutliers detectionSentiment analysisViésO projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notíciasThe project described here proposes a model to study bias on newswire texts, related to political entities. Three types of bias are analysed: selection bias, which refers to the amount of times an entity is referenced by the media outlet; coverage bias, which assesses the amount of coverage given to an entity and, finally, the assertion bias, which analyses whether the news is a positive or negative report of an entity. To accomplish this, a corpus was systematically built by extracting news from 5 different newswires. These texts were manually classified according to their polarity alignment and associated entity. Sentiment Analysis techniques were applied and evaluated using the corpus. Based on the concept of outliers, a methodology for bias detection was created. Bias was analysed using the proposed methodology on the generated corpus for candidates to the government of the state of São Paulo and to presidency, being identified in two newswires for the three above-defined typesBiblioteca Digitais de Teses e Dissertações da USPRoman, Norton TrevisanArruda, Gabriel Domingos de2015-12-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-10012016-144315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de viés em notícias na língua portuguesa Bias analysis on newswire in portuguese |
title |
Análise de viés em notícias na língua portuguesa |
spellingShingle |
Análise de viés em notícias na língua portuguesa Arruda, Gabriel Domingos de Análise de sentimentos Bias Detecção de outliers Outliers detection Sentiment analysis Viés |
title_short |
Análise de viés em notícias na língua portuguesa |
title_full |
Análise de viés em notícias na língua portuguesa |
title_fullStr |
Análise de viés em notícias na língua portuguesa |
title_full_unstemmed |
Análise de viés em notícias na língua portuguesa |
title_sort |
Análise de viés em notícias na língua portuguesa |
author |
Arruda, Gabriel Domingos de |
author_facet |
Arruda, Gabriel Domingos de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Roman, Norton Trevisan |
dc.contributor.author.fl_str_mv |
Arruda, Gabriel Domingos de |
dc.subject.por.fl_str_mv |
Análise de sentimentos Bias Detecção de outliers Outliers detection Sentiment analysis Viés |
topic |
Análise de sentimentos Bias Detecção de outliers Outliers detection Sentiment analysis Viés |
description |
O projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notícias |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/ |
url |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090567207911424 |