Análise de viés em notícias na língua portuguesa

Detalhes bibliográficos
Autor(a) principal: Arruda, Gabriel Domingos de
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/
Resumo: O projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notícias
id USP_900ca2cb51866c5dd03b99da2f0bd7dc
oai_identifier_str oai:teses.usp.br:tde-10012016-144315
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise de viés em notícias na língua portuguesaBias analysis on newswire in portugueseAnálise de sentimentosBiasDetecção de outliersOutliers detectionSentiment analysisViésO projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notíciasThe project described here proposes a model to study bias on newswire texts, related to political entities. Three types of bias are analysed: selection bias, which refers to the amount of times an entity is referenced by the media outlet; coverage bias, which assesses the amount of coverage given to an entity and, finally, the assertion bias, which analyses whether the news is a positive or negative report of an entity. To accomplish this, a corpus was systematically built by extracting news from 5 different newswires. These texts were manually classified according to their polarity alignment and associated entity. Sentiment Analysis techniques were applied and evaluated using the corpus. Based on the concept of outliers, a methodology for bias detection was created. Bias was analysed using the proposed methodology on the generated corpus for candidates to the government of the state of São Paulo and to presidency, being identified in two newswires for the three above-defined typesBiblioteca Digitais de Teses e Dissertações da USPRoman, Norton TrevisanArruda, Gabriel Domingos de2015-12-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-10012016-144315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de viés em notícias na língua portuguesa
Bias analysis on newswire in portuguese
title Análise de viés em notícias na língua portuguesa
spellingShingle Análise de viés em notícias na língua portuguesa
Arruda, Gabriel Domingos de
Análise de sentimentos
Bias
Detecção de outliers
Outliers detection
Sentiment analysis
Viés
title_short Análise de viés em notícias na língua portuguesa
title_full Análise de viés em notícias na língua portuguesa
title_fullStr Análise de viés em notícias na língua portuguesa
title_full_unstemmed Análise de viés em notícias na língua portuguesa
title_sort Análise de viés em notícias na língua portuguesa
author Arruda, Gabriel Domingos de
author_facet Arruda, Gabriel Domingos de
author_role author
dc.contributor.none.fl_str_mv Roman, Norton Trevisan
dc.contributor.author.fl_str_mv Arruda, Gabriel Domingos de
dc.subject.por.fl_str_mv Análise de sentimentos
Bias
Detecção de outliers
Outliers detection
Sentiment analysis
Viés
topic Análise de sentimentos
Bias
Detecção de outliers
Outliers detection
Sentiment analysis
Viés
description O projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notícias
publishDate 2015
dc.date.none.fl_str_mv 2015-12-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090567207911424