Otimização multinível em predição de links

Detalhes bibliográficos
Autor(a) principal: Silva, Vinícius Ferreira da
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-170343/
Resumo: A predição de links em redes é uma tarefa com aplicações em diversos cenários. Com a automatização de processos, as redes sociais, redes tecnológicas e outras cresceram muito em número de vértices e arestas. Portanto, a utilização de preditores de links em redes com alta complexidade estrutural não é trivial, mesmo considerando algoritmos de baixa complexidade computacional. A grande quantidade de operações necessárias para que os preditores possam escolher quais arestas são promissoras torna o processo de considerar a rede toda inviável na maioria dos casos. As abordagens existentes enfrentam essa característica de diversas formas, sendo que as mais populares são as que limitam o conjunto de pares de vértices que serão considerados para existência de arestas promissoras. Este projeto aborda a criação de uma estratégia que utiliza otimização multinível para contrair as redes, executar os algoritmos de predição de links nas redes contraídas e projetar os resultados de predição para a rede original, para reduzir o número de operações necessárias à predição de links. Os resultados mostram que a abordagem consegue reduzir o tempo necessário para predição, apesar de perdas esperadas na qualidade na predição.
id USP_90dcd59ee183d0ac7ccfd229dc50e48f
oai_identifier_str oai:teses.usp.br:tde-18102018-170343
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Otimização multinível em predição de linksMultilevel optimization for link predictionLink predictionMultilevel optimizationOtimização multinívelPredição de linksA predição de links em redes é uma tarefa com aplicações em diversos cenários. Com a automatização de processos, as redes sociais, redes tecnológicas e outras cresceram muito em número de vértices e arestas. Portanto, a utilização de preditores de links em redes com alta complexidade estrutural não é trivial, mesmo considerando algoritmos de baixa complexidade computacional. A grande quantidade de operações necessárias para que os preditores possam escolher quais arestas são promissoras torna o processo de considerar a rede toda inviável na maioria dos casos. As abordagens existentes enfrentam essa característica de diversas formas, sendo que as mais populares são as que limitam o conjunto de pares de vértices que serão considerados para existência de arestas promissoras. Este projeto aborda a criação de uma estratégia que utiliza otimização multinível para contrair as redes, executar os algoritmos de predição de links nas redes contraídas e projetar os resultados de predição para a rede original, para reduzir o número de operações necessárias à predição de links. Os resultados mostram que a abordagem consegue reduzir o tempo necessário para predição, apesar de perdas esperadas na qualidade na predição.Link prediction in networks is a task with applications in several scenarios. With the automation of processes, social networks, technological networks, and others have grown considerably in the number of vertices and edges. Therefore, the creation of systems for link prediction in networks of high structural complexity is not a trivial process, even considering low-complexity algorithms. The large number of operations required for predicting which edges are promising makes the considering of the whole network impracticable in many cases. The existing approaches face this characteristic in several ways, and the most popular are those that limit the set of vertex pairs that will be considered for the existence of promising edges. This project addresses a strategy that uses multilevel optimization to coarse networks, execute prediction algorithms on coarsened networks and project the results back to the original network, in order to reduce the number of operations for link prediction. The experiments show that the approach can reduce the time despite some expected losses of accuracy.Biblioteca Digitais de Teses e Dissertações da USPLopes, Alneu de AndradeSilva, Vinícius Ferreira da2018-06-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-170343/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-11-01T16:25:01Zoai:teses.usp.br:tde-18102018-170343Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-11-01T16:25:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Otimização multinível em predição de links
Multilevel optimization for link prediction
title Otimização multinível em predição de links
spellingShingle Otimização multinível em predição de links
Silva, Vinícius Ferreira da
Link prediction
Multilevel optimization
Otimização multinível
Predição de links
title_short Otimização multinível em predição de links
title_full Otimização multinível em predição de links
title_fullStr Otimização multinível em predição de links
title_full_unstemmed Otimização multinível em predição de links
title_sort Otimização multinível em predição de links
author Silva, Vinícius Ferreira da
author_facet Silva, Vinícius Ferreira da
author_role author
dc.contributor.none.fl_str_mv Lopes, Alneu de Andrade
dc.contributor.author.fl_str_mv Silva, Vinícius Ferreira da
dc.subject.por.fl_str_mv Link prediction
Multilevel optimization
Otimização multinível
Predição de links
topic Link prediction
Multilevel optimization
Otimização multinível
Predição de links
description A predição de links em redes é uma tarefa com aplicações em diversos cenários. Com a automatização de processos, as redes sociais, redes tecnológicas e outras cresceram muito em número de vértices e arestas. Portanto, a utilização de preditores de links em redes com alta complexidade estrutural não é trivial, mesmo considerando algoritmos de baixa complexidade computacional. A grande quantidade de operações necessárias para que os preditores possam escolher quais arestas são promissoras torna o processo de considerar a rede toda inviável na maioria dos casos. As abordagens existentes enfrentam essa característica de diversas formas, sendo que as mais populares são as que limitam o conjunto de pares de vértices que serão considerados para existência de arestas promissoras. Este projeto aborda a criação de uma estratégia que utiliza otimização multinível para contrair as redes, executar os algoritmos de predição de links nas redes contraídas e projetar os resultados de predição para a rede original, para reduzir o número de operações necessárias à predição de links. Os resultados mostram que a abordagem consegue reduzir o tempo necessário para predição, apesar de perdas esperadas na qualidade na predição.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-170343/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-170343/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257114834108416