Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-08032021-102116/ |
Resumo: | O diagnóstico de falhas representa uma tarefa importante de equipes de manutenção operacional, tendo como foco a tarefa de identificar as causas de problemas em equipamentos que possam levar a desvios no comportamento esperado, bem como à redução da eficiência prevista. A aplicação de técnicas de detecção e diagnóstico associadas a métodos preditivos, comumente conhecida por prognóstico, possibilita um planejamento mais preciso e adequado para tratar eventos inesperados que possam colocar em risco o funcionamento do sistema sob estudo. Por meio de uma identificação antecipada e detalhada de possíveis causas e ameaças, as equipes de manutenção podem se mobilizar de forma mais apropriada, planejada e assertiva, para tratar situações indesejadas, antes que elas realmente ocorram, favorecendo uma maior confiabilidade do sistema e, consequentemente, evitando interrupções inesperadas do serviço, reduzindo a possibilidade de perdas materiais e humanas. Diversas técnicas têm sido sugeridas na literatura para endereçar questões sobre prognósticos de falhas, com grande destaque para os métodos baseados em deep learning. Tais métodos são considerados como possuindo características denominadas \"caixa-preta\", por não proverem meios que expliquem os resultados obtidos, dificultando a adoção de decisões embasadas e confiáveis. Dessa forma, esta pesquisa propõe um método não supervisionado para diagnóstico e prognóstico de falhas, tendo como base técnicas de deep learning, que propiciem meios para atestare contribuir para robustez dos resultados obtidos, promovendo maior confiança e assertividade na previsão e identificação de possíveis problemas. No estudo de caso são consideradas medições físicas reais de parâmetros de rodas e rolamentos de vagões ferroviários de transporte de carga pesada, capturadas a partir de múltiplos sensores de via acopladas em pontos específicos de uma estrada de ferro no Brasil. São propostos meios que enderecem restrições na modelagem com dados e que atestem a razoabilidade das predições realizadas. |
id |
USP_911e8e9e53278be926dafea183208900 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08032021-102116 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas.Interpretability of deep learning models Applied to unsupervised fault diagnosis and prognosis.Aprendizado computacionalCondition-based maintenanceConfiabilidadeDiagnosisDiagnósticoMachine learningManutenção baseada em condiçãoPrognosisPrognósticoReliabilityO diagnóstico de falhas representa uma tarefa importante de equipes de manutenção operacional, tendo como foco a tarefa de identificar as causas de problemas em equipamentos que possam levar a desvios no comportamento esperado, bem como à redução da eficiência prevista. A aplicação de técnicas de detecção e diagnóstico associadas a métodos preditivos, comumente conhecida por prognóstico, possibilita um planejamento mais preciso e adequado para tratar eventos inesperados que possam colocar em risco o funcionamento do sistema sob estudo. Por meio de uma identificação antecipada e detalhada de possíveis causas e ameaças, as equipes de manutenção podem se mobilizar de forma mais apropriada, planejada e assertiva, para tratar situações indesejadas, antes que elas realmente ocorram, favorecendo uma maior confiabilidade do sistema e, consequentemente, evitando interrupções inesperadas do serviço, reduzindo a possibilidade de perdas materiais e humanas. Diversas técnicas têm sido sugeridas na literatura para endereçar questões sobre prognósticos de falhas, com grande destaque para os métodos baseados em deep learning. Tais métodos são considerados como possuindo características denominadas \"caixa-preta\", por não proverem meios que expliquem os resultados obtidos, dificultando a adoção de decisões embasadas e confiáveis. Dessa forma, esta pesquisa propõe um método não supervisionado para diagnóstico e prognóstico de falhas, tendo como base técnicas de deep learning, que propiciem meios para atestare contribuir para robustez dos resultados obtidos, promovendo maior confiança e assertividade na previsão e identificação de possíveis problemas. No estudo de caso são consideradas medições físicas reais de parâmetros de rodas e rolamentos de vagões ferroviários de transporte de carga pesada, capturadas a partir de múltiplos sensores de via acopladas em pontos específicos de uma estrada de ferro no Brasil. São propostos meios que enderecem restrições na modelagem com dados e que atestem a razoabilidade das predições realizadas.Failure diagnosis represents an important task for operational maintenance teams, focusing on the task of identifying the causes of equipment problems that can lead to deviations in expected behavior, as well as reducing expected efficiency. The application of detection and diagnostic techniques associated with predictive methods, commonly known as prognosis, enables a more accurate and adequate planning to deal with unexpected events that may put the system under study at risk. Through an early and detailed identification of possible causes and threats, maintenance teams can mobilize themselves in a more appropriate, planned and assertive manner, to deal with unwanted situations, before they actually occur, favoring greater system reliability and, consequently, avoiding unexpected service interruptions, reducing the possibility of material and human losses. Several techniques have been suggested in the literature to address questions about failure prognosis, with great emphasis on methods based on deep learning. Such methods are considered to have characteristics called \"black box\", as they do not provide the means to explain the results obtained, making it difficult to adopt informed and reliable decisions. Thus, this research proposes an unsupervised method for the diagnosis and prognosis of failures, based on deep learning techniques, which provide means to attest and contribute to the robustness of the results obtained, promoting greater confidence and assertiveness in the prediction and identification of possible problems. In the case study, real physical measurements of parameters of wheels and bearings of railroad cars carrying heavy loads are considered, captured from multiple track sensors coupled at specific points in a Brazilian railroad. Means are proposed that address restrictions in modeling with data and that attest to the reasonableness of the predictions made.Biblioteca Digitais de Teses e Dissertações da USPAlmeida Junior, Jorge Rady deOliveira, David Fernandes Neves2020-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-08032021-102116/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T12:45:42Zoai:teses.usp.br:tde-08032021-102116Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. Interpretability of deep learning models Applied to unsupervised fault diagnosis and prognosis. |
title |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
spellingShingle |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. Oliveira, David Fernandes Neves Aprendizado computacional Condition-based maintenance Confiabilidade Diagnosis Diagnóstico Machine learning Manutenção baseada em condição Prognosis Prognóstico Reliability |
title_short |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
title_full |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
title_fullStr |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
title_full_unstemmed |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
title_sort |
Interpretabilidade de modelos de aprendizado profundo aplicados ao diagnóstico e prognóstico não supervisionado de falhas. |
author |
Oliveira, David Fernandes Neves |
author_facet |
Oliveira, David Fernandes Neves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida Junior, Jorge Rady de |
dc.contributor.author.fl_str_mv |
Oliveira, David Fernandes Neves |
dc.subject.por.fl_str_mv |
Aprendizado computacional Condition-based maintenance Confiabilidade Diagnosis Diagnóstico Machine learning Manutenção baseada em condição Prognosis Prognóstico Reliability |
topic |
Aprendizado computacional Condition-based maintenance Confiabilidade Diagnosis Diagnóstico Machine learning Manutenção baseada em condição Prognosis Prognóstico Reliability |
description |
O diagnóstico de falhas representa uma tarefa importante de equipes de manutenção operacional, tendo como foco a tarefa de identificar as causas de problemas em equipamentos que possam levar a desvios no comportamento esperado, bem como à redução da eficiência prevista. A aplicação de técnicas de detecção e diagnóstico associadas a métodos preditivos, comumente conhecida por prognóstico, possibilita um planejamento mais preciso e adequado para tratar eventos inesperados que possam colocar em risco o funcionamento do sistema sob estudo. Por meio de uma identificação antecipada e detalhada de possíveis causas e ameaças, as equipes de manutenção podem se mobilizar de forma mais apropriada, planejada e assertiva, para tratar situações indesejadas, antes que elas realmente ocorram, favorecendo uma maior confiabilidade do sistema e, consequentemente, evitando interrupções inesperadas do serviço, reduzindo a possibilidade de perdas materiais e humanas. Diversas técnicas têm sido sugeridas na literatura para endereçar questões sobre prognósticos de falhas, com grande destaque para os métodos baseados em deep learning. Tais métodos são considerados como possuindo características denominadas \"caixa-preta\", por não proverem meios que expliquem os resultados obtidos, dificultando a adoção de decisões embasadas e confiáveis. Dessa forma, esta pesquisa propõe um método não supervisionado para diagnóstico e prognóstico de falhas, tendo como base técnicas de deep learning, que propiciem meios para atestare contribuir para robustez dos resultados obtidos, promovendo maior confiança e assertividade na previsão e identificação de possíveis problemas. No estudo de caso são consideradas medições físicas reais de parâmetros de rodas e rolamentos de vagões ferroviários de transporte de carga pesada, capturadas a partir de múltiplos sensores de via acopladas em pontos específicos de uma estrada de ferro no Brasil. São propostos meios que enderecem restrições na modelagem com dados e que atestem a razoabilidade das predições realizadas. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-08032021-102116/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-08032021-102116/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256495897444352 |