LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão

Detalhes bibliográficos
Autor(a) principal: Basgalupp, Márcio Porto
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052010-165344/
Resumo: Dentre as diversas tarefas em que os algoritmos evolutivos têm sido empregados, a indução de regras e de árvores de decisão tem se mostrado uma abordagem bastante atrativa em diversos domínios de aplicação. Algoritmos de indução de árvores de decisão representam uma das técnicas mais populares em problemas de classificação. Entretanto, os algoritmos tradicionais de indução apresentam algumas limitações, pois, geralmente, usam uma estratégia gulosa, top down e com particionamento recursivo para a construção das árvores. Esses fatores degradam a qualidade dos dados, os quais podem gerar regras estatisticamente não significativas. Este trabalho propõe o algoritmo LEGAL-Tree, uma nova abordagem baseada em algoritmos genéticos para indução de árvores de decisão. O algoritmo proposto visa evitar a estratégia gulosa e a convergência para ótimos locais. Para isso, esse algoritmo adota uma abordagem multi-objetiva lexicográfica. Nos experimentos realizados sobre bases de dados de diversos problemas de classificação, a função de fitness de LEGAL-Tree considera as duas medidas mais comuns para avaliação das árvores de decisão: acurácia e tamanho da árvore. Os resultados obtidos mostraram que LEGAL-Tree teve um desempenho equivalente ao algoritmo SimpleCart (implementação em Java do algoritmo CART) e superou o tradicional algoritmo J48 (implementação em Java do algoritmo C4.5), além de ter superado também o algoritmo evolutivo GALE. A principal contribuição de LEGAL-Tree não foi gerar árvores com maior acurácia preditiva, mas sim gerar árvores menores e, portanto, mais compreensíveis ao usuário do que as outras abordagens, mantendo a acurácia preditiva equivalente. Isso mostra que LEGAL-Tree obteve sucesso na otimização lexicográfica de seus objetivos, uma vez que a idéia era justamente dar preferência às árvores menores (em termos de número de nodos) quando houvesse equivalência de acurácia
id USP_9148b1209f54f8ac44f0e8f6f75b09a1
oai_identifier_str oai:teses.usp.br:tde-12052010-165344
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisãoLEGAL-Tree: a lexocographic genetic algorithm for learning decision treesAlgoritmos genéticosÁrvores de decisãoClassificaçãoClassificationDecision treesGenetic algoithmsDentre as diversas tarefas em que os algoritmos evolutivos têm sido empregados, a indução de regras e de árvores de decisão tem se mostrado uma abordagem bastante atrativa em diversos domínios de aplicação. Algoritmos de indução de árvores de decisão representam uma das técnicas mais populares em problemas de classificação. Entretanto, os algoritmos tradicionais de indução apresentam algumas limitações, pois, geralmente, usam uma estratégia gulosa, top down e com particionamento recursivo para a construção das árvores. Esses fatores degradam a qualidade dos dados, os quais podem gerar regras estatisticamente não significativas. Este trabalho propõe o algoritmo LEGAL-Tree, uma nova abordagem baseada em algoritmos genéticos para indução de árvores de decisão. O algoritmo proposto visa evitar a estratégia gulosa e a convergência para ótimos locais. Para isso, esse algoritmo adota uma abordagem multi-objetiva lexicográfica. Nos experimentos realizados sobre bases de dados de diversos problemas de classificação, a função de fitness de LEGAL-Tree considera as duas medidas mais comuns para avaliação das árvores de decisão: acurácia e tamanho da árvore. Os resultados obtidos mostraram que LEGAL-Tree teve um desempenho equivalente ao algoritmo SimpleCart (implementação em Java do algoritmo CART) e superou o tradicional algoritmo J48 (implementação em Java do algoritmo C4.5), além de ter superado também o algoritmo evolutivo GALE. A principal contribuição de LEGAL-Tree não foi gerar árvores com maior acurácia preditiva, mas sim gerar árvores menores e, portanto, mais compreensíveis ao usuário do que as outras abordagens, mantendo a acurácia preditiva equivalente. Isso mostra que LEGAL-Tree obteve sucesso na otimização lexicográfica de seus objetivos, uma vez que a idéia era justamente dar preferência às árvores menores (em termos de número de nodos) quando houvesse equivalência de acuráciaAmong the several tasks evolutionary algorithms have been successfully employed, the induction of classification rules and decision trees has been shown to be a relevant approach for several application domains. Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, conventionally used decision trees induction algorithms present limitations due to the strategy they usually implement: recursive top-down data partitioning through a greedy split evaluation. The main problem with this strategy is quality loss during the partitioning process, which can lead to statistically insignificant rules. In this thesis we propose the LEGAL-Tree algorithm, a new GA-based algorithm for decision tree induction. The proposed algorithm aims to prevent the greedy strategy and to avoid converging to local optima. For such, it is based on a lexicographic multi-objective approach. In the experiments which were run in several classification problems, LEGAL-Tree\'s fitness function considers two of the most common measures to evaluate decision trees: accuracy and tree size. Results show that LEGAL-Tree performs similarly to SimpleCart (CART Java implementation) and outperforms J48 (C4.5 Java implementation) and the evolutionary algorithm GALE. LEGAL-Tree\'s main contribution is not to generate trees with the highest predictive accuracy possible, but to provide smaller (and thus more comprehensible) trees, keeping a competitive accuracy rate. LEGAL-Tree is able to provide both comprehensible and accurate trees, which shows that the lexicographic fitness evaluation is successful since its goal is to prioritize smaller trees (fewer number of nodes) when there is equivalency in terms of accuracyBiblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deFreitas, Alex AlvesBasgalupp, Márcio Porto2010-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052010-165344/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-12052010-165344Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
LEGAL-Tree: a lexocographic genetic algorithm for learning decision trees
title LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
spellingShingle LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
Basgalupp, Márcio Porto
Algoritmos genéticos
Árvores de decisão
Classificação
Classification
Decision trees
Genetic algoithms
title_short LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
title_full LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
title_fullStr LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
title_full_unstemmed LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
title_sort LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão
author Basgalupp, Márcio Porto
author_facet Basgalupp, Márcio Porto
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
Freitas, Alex Alves
dc.contributor.author.fl_str_mv Basgalupp, Márcio Porto
dc.subject.por.fl_str_mv Algoritmos genéticos
Árvores de decisão
Classificação
Classification
Decision trees
Genetic algoithms
topic Algoritmos genéticos
Árvores de decisão
Classificação
Classification
Decision trees
Genetic algoithms
description Dentre as diversas tarefas em que os algoritmos evolutivos têm sido empregados, a indução de regras e de árvores de decisão tem se mostrado uma abordagem bastante atrativa em diversos domínios de aplicação. Algoritmos de indução de árvores de decisão representam uma das técnicas mais populares em problemas de classificação. Entretanto, os algoritmos tradicionais de indução apresentam algumas limitações, pois, geralmente, usam uma estratégia gulosa, top down e com particionamento recursivo para a construção das árvores. Esses fatores degradam a qualidade dos dados, os quais podem gerar regras estatisticamente não significativas. Este trabalho propõe o algoritmo LEGAL-Tree, uma nova abordagem baseada em algoritmos genéticos para indução de árvores de decisão. O algoritmo proposto visa evitar a estratégia gulosa e a convergência para ótimos locais. Para isso, esse algoritmo adota uma abordagem multi-objetiva lexicográfica. Nos experimentos realizados sobre bases de dados de diversos problemas de classificação, a função de fitness de LEGAL-Tree considera as duas medidas mais comuns para avaliação das árvores de decisão: acurácia e tamanho da árvore. Os resultados obtidos mostraram que LEGAL-Tree teve um desempenho equivalente ao algoritmo SimpleCart (implementação em Java do algoritmo CART) e superou o tradicional algoritmo J48 (implementação em Java do algoritmo C4.5), além de ter superado também o algoritmo evolutivo GALE. A principal contribuição de LEGAL-Tree não foi gerar árvores com maior acurácia preditiva, mas sim gerar árvores menores e, portanto, mais compreensíveis ao usuário do que as outras abordagens, mantendo a acurácia preditiva equivalente. Isso mostra que LEGAL-Tree obteve sucesso na otimização lexicográfica de seus objetivos, uma vez que a idéia era justamente dar preferência às árvores menores (em termos de número de nodos) quando houvesse equivalência de acurácia
publishDate 2010
dc.date.none.fl_str_mv 2010-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052010-165344/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052010-165344/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256892830646272