Algorithm selection and performance understanding for time series forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-101122/ |
Resumo: | Time series forecasting is a strategic task in supporting decision-making. The wide availability of forecasting algorithms has generated a demand for algorithm selection methods and approaches that enable the understanding of predictive performance given a time series. This thesis focuses on developing new approaches for forecast combination selection and understanding the predictive performance of time series forecasting algorithms. The research started with a review of the state of the art in time series forecasting, focusing on algorithm selection and understanding of predictive performance. This study highlighted the limitations of existing approaches and identified gaps in the literature that this research could address. The main contributions of this thesis are fourfold: firstly, the development of a metalearning-based approach for selecting forecasting combinations with time series decomposition. A synthetic time series generation method based on dataset morphing. The empirical analysis of different performance measures for the choice of meta-label in the selection algorithms by metalearning. Finally, an analysis of applying Seasonal and Trend decomposition using Loess as a pre-processing step for machine learning algorithms in the time series forecasting task. The MetaFore approach selects combinations of machine learning algorithms for the trend and residual components in the time series forecasting task. The components are separated with the Seasonal and Trend decomposition using Loess, and the seasonality is forecasted with the seasonal naive method. MetaFore was evaluated in the monthly time series of the M4 competition and achieved better predictive and computational performance than LSTM neural networks in more than 70% of the datasets. The tsMorph method generates synthetic time series by gradually transforming a source time series into a target time series. TsMorph was applied to understand the predictive performance variation of Support Vector Regression and Long Short-Term Memory neural network prediction algorithms. The results showed that the tsMorph method generated time series with gradual predictive performance and meta-feature variation. Empirical analysis of different performance measures as meta-label in the selection of time series forecasting algorithms showed no statistical difference in the predictive performances of the meta and base level. The analysis of the application of Seasonal Trend with Loess decomposition as a pre-processing step in machine learning showed that when the residual component follows a normal distribution, the decomposition improves the predictive performance of the algorithms. In summary, this research contributed to developing new approaches for efficiently predicting and understanding algorithms performance. Studies on the selection of forecasting combinations and performance understanding can be easily included in time series forecasting processes and open perspectives for research and development in metalearning and autoML. |
id |
USP_92340c734ad7eb3d278a2c2660b7431d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-31082023-101122 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Algorithm selection and performance understanding for time series forecastingSeleção e compreensão de desempenho de algoritmos para previsão de séries temporaisAlgorithm selectionDesempenho preditivoMeta-aprendizadoMetalearningPredictive performancePrevisão de séries temporaisSeleção de algoritmosTime series forecastingTime series forecasting is a strategic task in supporting decision-making. The wide availability of forecasting algorithms has generated a demand for algorithm selection methods and approaches that enable the understanding of predictive performance given a time series. This thesis focuses on developing new approaches for forecast combination selection and understanding the predictive performance of time series forecasting algorithms. The research started with a review of the state of the art in time series forecasting, focusing on algorithm selection and understanding of predictive performance. This study highlighted the limitations of existing approaches and identified gaps in the literature that this research could address. The main contributions of this thesis are fourfold: firstly, the development of a metalearning-based approach for selecting forecasting combinations with time series decomposition. A synthetic time series generation method based on dataset morphing. The empirical analysis of different performance measures for the choice of meta-label in the selection algorithms by metalearning. Finally, an analysis of applying Seasonal and Trend decomposition using Loess as a pre-processing step for machine learning algorithms in the time series forecasting task. The MetaFore approach selects combinations of machine learning algorithms for the trend and residual components in the time series forecasting task. The components are separated with the Seasonal and Trend decomposition using Loess, and the seasonality is forecasted with the seasonal naive method. MetaFore was evaluated in the monthly time series of the M4 competition and achieved better predictive and computational performance than LSTM neural networks in more than 70% of the datasets. The tsMorph method generates synthetic time series by gradually transforming a source time series into a target time series. TsMorph was applied to understand the predictive performance variation of Support Vector Regression and Long Short-Term Memory neural network prediction algorithms. The results showed that the tsMorph method generated time series with gradual predictive performance and meta-feature variation. Empirical analysis of different performance measures as meta-label in the selection of time series forecasting algorithms showed no statistical difference in the predictive performances of the meta and base level. The analysis of the application of Seasonal Trend with Loess decomposition as a pre-processing step in machine learning showed that when the residual component follows a normal distribution, the decomposition improves the predictive performance of the algorithms. In summary, this research contributed to developing new approaches for efficiently predicting and understanding algorithms performance. Studies on the selection of forecasting combinations and performance understanding can be easily included in time series forecasting processes and open perspectives for research and development in metalearning and autoML.Previsão de séries temporais é uma tarefa estratégica no suporte à tomada de decisão. A grande disponibilidade, e variabilidade, de algoritmos capazes de induzir modelos preditivos tem gerado uma demanda por formas de seleção de algoritmos. Adicionalmente, para validação do modelo induzido, é importante entender o seu desempenho preditivo quando aplicado a uma série temporal. Esta tese investiga novas abordagens de seleção de algoritmos para combinação de previsões e entendimento de desempenho preditivo de modelos induzidos por algoritmos para previsão de séries temporais. Para isso, foi inicialmente pesquisado o estado da arte em previsão de séries temporais, com foco na seleção de algoritmos e entendimento de desempenho preditivo. Este estudo observou as limitações de abordagens existentes e identificou as lacunas na literatura que puderam ser solucionadas por esta pesquisa. As principais contribuições desta tese são quatro: o desenvolvimento de uma abordagem baseada em meta-aprendizado para seleção de combinações de previsão com decomposição de séries temporais; um método de geração de séries temporais sintéticas baseado em dataset morphing; a análise empírica de diferentes medidas de desempenho para escolha de meta-alvo na seleção de algoritmos por meta-aprendizado; a análise da aplicação de decomposição de sazonalidade e tendência com Loess como uma etapa de pré-processamento. A abordagem MetaFore combina algoritmos de aprendizado de máquina para as componentes de tendência e resíduo na tarefa de previsão de séries temporais. As componentes são separadas com a decomposição de sazonalidade e tendência com Loess e a sazonalidade é prevista com o método naive sazonal. MetaFore foi avaliado nas séries temporais mensais da competição M4 e atingiu melhor desempenho preditivo e computacional que um método que é estado da arte, as redes neurais Long Short-Term Memory (LSTM), em mais de 70% dos conjuntos de dados. Na pesquisa, o método tsMorph gera séries temporais sintéticas de forma gradual transformando uma série temporal de origem em uma série temporal alvo. O método tsMorph foi aplicado para o entendimento da variação de desempenho preditivo de algoritmos de previsão Regressão com Suporte Vetorial e a rede neural LSTM. Os resultados experimentais mostraram que o método tsMorph gerou séries temporais com variação gradual do desempenho preditivo e meta-características. Esta pesquisa contribuiu para o desenvolvimento de novas abordagens de previsão e entendimento de desempenho de algoritmos eficientemente. Os estudos em seleção de combinações de previsões e entendimento de desempenho podem ser facilmente incluídos nos processos de previsão de séries temporais e abrem perspectivas para pesquisa e desenvolvimento na área de meta-aprendizado e aprendizado de máquina automático.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deSantos, Moisés Rocha dos2023-05-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-101122/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-01T14:19:08Zoai:teses.usp.br:tde-31082023-101122Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-01T14:19:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Algorithm selection and performance understanding for time series forecasting Seleção e compreensão de desempenho de algoritmos para previsão de séries temporais |
title |
Algorithm selection and performance understanding for time series forecasting |
spellingShingle |
Algorithm selection and performance understanding for time series forecasting Santos, Moisés Rocha dos Algorithm selection Desempenho preditivo Meta-aprendizado Metalearning Predictive performance Previsão de séries temporais Seleção de algoritmos Time series forecasting |
title_short |
Algorithm selection and performance understanding for time series forecasting |
title_full |
Algorithm selection and performance understanding for time series forecasting |
title_fullStr |
Algorithm selection and performance understanding for time series forecasting |
title_full_unstemmed |
Algorithm selection and performance understanding for time series forecasting |
title_sort |
Algorithm selection and performance understanding for time series forecasting |
author |
Santos, Moisés Rocha dos |
author_facet |
Santos, Moisés Rocha dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, André Carlos Ponce de Leon Ferreira de |
dc.contributor.author.fl_str_mv |
Santos, Moisés Rocha dos |
dc.subject.por.fl_str_mv |
Algorithm selection Desempenho preditivo Meta-aprendizado Metalearning Predictive performance Previsão de séries temporais Seleção de algoritmos Time series forecasting |
topic |
Algorithm selection Desempenho preditivo Meta-aprendizado Metalearning Predictive performance Previsão de séries temporais Seleção de algoritmos Time series forecasting |
description |
Time series forecasting is a strategic task in supporting decision-making. The wide availability of forecasting algorithms has generated a demand for algorithm selection methods and approaches that enable the understanding of predictive performance given a time series. This thesis focuses on developing new approaches for forecast combination selection and understanding the predictive performance of time series forecasting algorithms. The research started with a review of the state of the art in time series forecasting, focusing on algorithm selection and understanding of predictive performance. This study highlighted the limitations of existing approaches and identified gaps in the literature that this research could address. The main contributions of this thesis are fourfold: firstly, the development of a metalearning-based approach for selecting forecasting combinations with time series decomposition. A synthetic time series generation method based on dataset morphing. The empirical analysis of different performance measures for the choice of meta-label in the selection algorithms by metalearning. Finally, an analysis of applying Seasonal and Trend decomposition using Loess as a pre-processing step for machine learning algorithms in the time series forecasting task. The MetaFore approach selects combinations of machine learning algorithms for the trend and residual components in the time series forecasting task. The components are separated with the Seasonal and Trend decomposition using Loess, and the seasonality is forecasted with the seasonal naive method. MetaFore was evaluated in the monthly time series of the M4 competition and achieved better predictive and computational performance than LSTM neural networks in more than 70% of the datasets. The tsMorph method generates synthetic time series by gradually transforming a source time series into a target time series. TsMorph was applied to understand the predictive performance variation of Support Vector Regression and Long Short-Term Memory neural network prediction algorithms. The results showed that the tsMorph method generated time series with gradual predictive performance and meta-feature variation. Empirical analysis of different performance measures as meta-label in the selection of time series forecasting algorithms showed no statistical difference in the predictive performances of the meta and base level. The analysis of the application of Seasonal Trend with Loess decomposition as a pre-processing step in machine learning showed that when the residual component follows a normal distribution, the decomposition improves the predictive performance of the algorithms. In summary, this research contributed to developing new approaches for efficiently predicting and understanding algorithms performance. Studies on the selection of forecasting combinations and performance understanding can be easily included in time series forecasting processes and open perspectives for research and development in metalearning and autoML. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-101122/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-101122/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257518231781376 |