Evaluation of sensory crispness of dry crispy foods by convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/ |
Resumo: | Convective drying is traditionally used to dehydrate food, reducing volume and water activity for easy transportation and storage. During drying, foods undergo volume reduction due to moisture loss, resulting in changes in the solid matrix and the formation of a crispy structure when crushed or fractured. This study focused on developing methods for quantifying and classifying crispy dried foods, such as potato chips, toasts, and fried foods like french fries and fried chicken, which were investigated. Compression profiles and sound noise were determined using a lever device covered by a noise suppression box. The captured sound was transformed into different parameters using Python and Mathematica Wolfram libraries. The power spectrum of the sound signal was obtained using the discrete Fourier transform method in Wolfram, while Onset Strength and Mel Frequency Cepstral Coefficients (MFCC) were obtained using the Librosa library. The sound spectra, Onset Strength, and MFCC were processed using neural networks to classify the crispness of fried chicken, potato chips, and toasts. The classification models using DFT and MFCC signals achieved an accuracy of over 95%. This study allowed the description of crispy sounds based on the intensity and duration of the signal. A second study utilized Python code and the Librosa library in an attempt to generate a dimensionless number, called the Zeta value, for classifying crispness intensity. The Zeta value was calculated based on Root Mean Squared Energy values multiplied by peak intensities within 1-second intervals. Experimental validation of the Zeta value was performed by acquiring crispness noises for toasts and French fries while monitoring moisture and storage time. Zeta behavior aligned with the crispness behavior in the tests of increasing and decreasing crispness over time. |
id |
USP_929efa22577dcff5364da066381c06ec |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09022024-105654 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networksAvaliação da crocância sensorial de alimentos crocantes secos por redes neurais convolucionaisConvolutional neural networkCrispnessCrocânciaFood materialsLibrosaLibrosaMateriais alimentíciosRede neural convolucionalToastTorradaConvective drying is traditionally used to dehydrate food, reducing volume and water activity for easy transportation and storage. During drying, foods undergo volume reduction due to moisture loss, resulting in changes in the solid matrix and the formation of a crispy structure when crushed or fractured. This study focused on developing methods for quantifying and classifying crispy dried foods, such as potato chips, toasts, and fried foods like french fries and fried chicken, which were investigated. Compression profiles and sound noise were determined using a lever device covered by a noise suppression box. The captured sound was transformed into different parameters using Python and Mathematica Wolfram libraries. The power spectrum of the sound signal was obtained using the discrete Fourier transform method in Wolfram, while Onset Strength and Mel Frequency Cepstral Coefficients (MFCC) were obtained using the Librosa library. The sound spectra, Onset Strength, and MFCC were processed using neural networks to classify the crispness of fried chicken, potato chips, and toasts. The classification models using DFT and MFCC signals achieved an accuracy of over 95%. This study allowed the description of crispy sounds based on the intensity and duration of the signal. A second study utilized Python code and the Librosa library in an attempt to generate a dimensionless number, called the Zeta value, for classifying crispness intensity. The Zeta value was calculated based on Root Mean Squared Energy values multiplied by peak intensities within 1-second intervals. Experimental validation of the Zeta value was performed by acquiring crispness noises for toasts and French fries while monitoring moisture and storage time. Zeta behavior aligned with the crispness behavior in the tests of increasing and decreasing crispness over time.A secagem convectiva é tradicionalmente utilizada para desidratar alimentos, a fim de reduzir o volume e a atividade de água, possibilitando o fácil transporte e armazenamento. Durante a secagem, os alimentos sofrem redução de volume de acordo com a perda de umidade, resultando em alterações na matriz sólida e formação de estrutura crocante quando esmagados ou fraturados. Este trabalho focou-se em desenvolver métodos de quantificação e classificação de alimentos secos crocantes, tais como batatas chips, torradas e alimentos fritos, como batatas fritas e frango frito. Os perfis de compressão e ruído sonoro foram determinados por um dispositivo de alavanca manual coberto por uma caixa de supressão de ruído. O som capturado foi transformado em diferentes parâmetros com o auxílio de bibliotecas em Python e Mathematica Wolfram. O espectro de potência do sinal sonoro foi obtido pelo método de transformada discreta de Fourier em Wolfram, enquanto o Onset Strength e os coeficientes cepstrais de frequência Mel (MFCC) foram obtidos por meio da biblioteca Librosa. Os espectros sonoros, Onset Strength e MFCC foram processados em redes neurais com o objetivo de classificar a crocância do frango frito, das batatas chips e das torradas. Os modelos de classificação que utilizaram como entradas os sinais DFT e MFCC apresentaram acurácia superior a 95%. Este estudo permitiu descrever o som crocante por meio da intensidade e duração do sinal. Um segundo estudo utilizou código Python e a biblioteca Librosa na tentativa de gerar um número adimensional para classificar a intensidade da crocância, denominado valor Zeta. O valor Zeta foi obtido a partir dos valores de Root Mean Squared Energy, multiplicados pelos picos de intensidade em intervalos de 1 segundo. A validação experimental do valor Zeta foi realizada por meio da aquisição de ruídos de crocância para torradas e batatas fritas, monitorando-se a umidade e o tempo de estocagem. O comportamento de Zeta alinhou-se com o comportamento da crocância nos testes de aumento e diminuição da crocância ao longo do tempo.Biblioteca Digitais de Teses e Dissertações da USPDacanal, Gustavo CesarLopes, Rafael Zinni2023-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-02-09T14:34:02Zoai:teses.usp.br:tde-09022024-105654Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-02-09T14:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks Avaliação da crocância sensorial de alimentos crocantes secos por redes neurais convolucionais |
title |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
spellingShingle |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks Lopes, Rafael Zinni Convolutional neural network Crispness Crocância Food materials Librosa Librosa Materiais alimentícios Rede neural convolucional Toast Torrada |
title_short |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
title_full |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
title_fullStr |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
title_full_unstemmed |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
title_sort |
Evaluation of sensory crispness of dry crispy foods by convolutional neural networks |
author |
Lopes, Rafael Zinni |
author_facet |
Lopes, Rafael Zinni |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dacanal, Gustavo Cesar |
dc.contributor.author.fl_str_mv |
Lopes, Rafael Zinni |
dc.subject.por.fl_str_mv |
Convolutional neural network Crispness Crocância Food materials Librosa Librosa Materiais alimentícios Rede neural convolucional Toast Torrada |
topic |
Convolutional neural network Crispness Crocância Food materials Librosa Librosa Materiais alimentícios Rede neural convolucional Toast Torrada |
description |
Convective drying is traditionally used to dehydrate food, reducing volume and water activity for easy transportation and storage. During drying, foods undergo volume reduction due to moisture loss, resulting in changes in the solid matrix and the formation of a crispy structure when crushed or fractured. This study focused on developing methods for quantifying and classifying crispy dried foods, such as potato chips, toasts, and fried foods like french fries and fried chicken, which were investigated. Compression profiles and sound noise were determined using a lever device covered by a noise suppression box. The captured sound was transformed into different parameters using Python and Mathematica Wolfram libraries. The power spectrum of the sound signal was obtained using the discrete Fourier transform method in Wolfram, while Onset Strength and Mel Frequency Cepstral Coefficients (MFCC) were obtained using the Librosa library. The sound spectra, Onset Strength, and MFCC were processed using neural networks to classify the crispness of fried chicken, potato chips, and toasts. The classification models using DFT and MFCC signals achieved an accuracy of over 95%. This study allowed the description of crispy sounds based on the intensity and duration of the signal. A second study utilized Python code and the Librosa library in an attempt to generate a dimensionless number, called the Zeta value, for classifying crispness intensity. The Zeta value was calculated based on Root Mean Squared Energy values multiplied by peak intensities within 1-second intervals. Experimental validation of the Zeta value was performed by acquiring crispness noises for toasts and French fries while monitoring moisture and storage time. Zeta behavior aligned with the crispness behavior in the tests of increasing and decreasing crispness over time. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/ |
url |
https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826318580457668608 |