Categorização em Text Mining
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22062015-202748/ |
Resumo: | Os avanços tecnológicos e científicos ocorridos nas últimas décadas têm proporcionado o desenvolvimento de métodos cada vez mais eficientes para o armazenamento e processamento de dados. Através da análise e interpretação dos dados, é possível obter o conhecimento. Devido o conhecimento poder auxiliar a tomada de decisão, ele se tornou um elemento de fundamental importância para diversas organizações. Uma grande parte dos dados disponíveis hoje se encontra na forma textual, exemplo disso é o crescimento vertiginoso no que se refere à internet. Como os textos são dados não estruturados, é necessário realizar uma série de passos para transformá-los em dados estruturados para uma possível análise. O processo denominado de Text Mining é uma tecnologia emergente e visa analisar grandes coleções de documentos. Esta dissertação de mestrado aborda a utilização de diferentes técnicas e ferramentas para Text Mining. Em conjunto com o módulo de Pré-processamento de textos, projetado e implementado por Imamura (2001), essas técnicas e ferramentas podem ser utilizadas para textos em português. São explorados alguns algoritmos utilizados para extração de conhecimento de dados, \"como: Vizinho mais Próximo, Naive Bayes, Árvore de Decisão, Regras de Decisão, Tabelas de Decisão e Support Vector Machines. Para verificar o comportamento desses algoritmos para textos em português, foram realizados alguns experimentos. |
id |
USP_934ec7cab37f142dac97ffe57002b798 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-22062015-202748 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Categorização em Text MiningText mining categorizationNão disponívelNot availableOs avanços tecnológicos e científicos ocorridos nas últimas décadas têm proporcionado o desenvolvimento de métodos cada vez mais eficientes para o armazenamento e processamento de dados. Através da análise e interpretação dos dados, é possível obter o conhecimento. Devido o conhecimento poder auxiliar a tomada de decisão, ele se tornou um elemento de fundamental importância para diversas organizações. Uma grande parte dos dados disponíveis hoje se encontra na forma textual, exemplo disso é o crescimento vertiginoso no que se refere à internet. Como os textos são dados não estruturados, é necessário realizar uma série de passos para transformá-los em dados estruturados para uma possível análise. O processo denominado de Text Mining é uma tecnologia emergente e visa analisar grandes coleções de documentos. Esta dissertação de mestrado aborda a utilização de diferentes técnicas e ferramentas para Text Mining. Em conjunto com o módulo de Pré-processamento de textos, projetado e implementado por Imamura (2001), essas técnicas e ferramentas podem ser utilizadas para textos em português. São explorados alguns algoritmos utilizados para extração de conhecimento de dados, \"como: Vizinho mais Próximo, Naive Bayes, Árvore de Decisão, Regras de Decisão, Tabelas de Decisão e Support Vector Machines. Para verificar o comportamento desses algoritmos para textos em português, foram realizados alguns experimentos.The technological and scientific progresses that happened in the last decades have been providing the development of methods that are more and more efficient for the storage and processing of data. It is possible to obtain knowledge through the analysis and interpretation of the data. Knowledge has become an element of fundamental importance for several organizations, due to its aiding in decision making. Most of the data available today are found in textual form, an example of this is the Internet vertiginous growth. As the texts are not structured data, it is necessary to accomplish a series of steps to transform them in structured data for a possible analysis. The process entitled Text Mining is an emergent technology and aims at analyzing great collections of documents. This masters dissertation approaches the use of different techniques and tools for Text Mining, which together with the Text pre-processing module projected and implemented by Imamura (2001), can be used for texts in Portuguese. Some algorithms, used for knowledge extraction of data, such as: Nearest Neighbor, Naive Bayes, Decision Tree, Decision Rule, Decision Table and Support Vector Machines, are explored. To verify the behavior of these algorithms for texts in Portuguese, some experiments were realized.Biblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraGonçalves, Lea Silvia Martins2002-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-22062015-202748/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-22062015-202748Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Categorização em Text Mining Text mining categorization |
title |
Categorização em Text Mining |
spellingShingle |
Categorização em Text Mining Gonçalves, Lea Silvia Martins Não disponível Not available |
title_short |
Categorização em Text Mining |
title_full |
Categorização em Text Mining |
title_fullStr |
Categorização em Text Mining |
title_full_unstemmed |
Categorização em Text Mining |
title_sort |
Categorização em Text Mining |
author |
Gonçalves, Lea Silvia Martins |
author_facet |
Gonçalves, Lea Silvia Martins |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rezende, Solange Oliveira |
dc.contributor.author.fl_str_mv |
Gonçalves, Lea Silvia Martins |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
Os avanços tecnológicos e científicos ocorridos nas últimas décadas têm proporcionado o desenvolvimento de métodos cada vez mais eficientes para o armazenamento e processamento de dados. Através da análise e interpretação dos dados, é possível obter o conhecimento. Devido o conhecimento poder auxiliar a tomada de decisão, ele se tornou um elemento de fundamental importância para diversas organizações. Uma grande parte dos dados disponíveis hoje se encontra na forma textual, exemplo disso é o crescimento vertiginoso no que se refere à internet. Como os textos são dados não estruturados, é necessário realizar uma série de passos para transformá-los em dados estruturados para uma possível análise. O processo denominado de Text Mining é uma tecnologia emergente e visa analisar grandes coleções de documentos. Esta dissertação de mestrado aborda a utilização de diferentes técnicas e ferramentas para Text Mining. Em conjunto com o módulo de Pré-processamento de textos, projetado e implementado por Imamura (2001), essas técnicas e ferramentas podem ser utilizadas para textos em português. São explorados alguns algoritmos utilizados para extração de conhecimento de dados, \"como: Vizinho mais Próximo, Naive Bayes, Árvore de Decisão, Regras de Decisão, Tabelas de Decisão e Support Vector Machines. Para verificar o comportamento desses algoritmos para textos em português, foram realizados alguns experimentos. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-06-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22062015-202748/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22062015-202748/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257272553570304 |