Método bagging para aprimoramento de previsões de séries temporais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/ |
Resumo: | Diferentes metodologias são propostas e exploradas com o intuito de reduzir o erro de previsão de séries temporais. Uma estratégia que vem se apresentando bastante promissora consiste em combinar diferentes previsões de diferentes modelos a fim de se obter uma melhor acurácia, ou seja, um menor erro de previsão. Este trabalho teve como objetivo realizar um estudo e aplicação do método bootstrap aggregating, mais conhecido como bagging, para aprimorar previsões de séries temporais. Primeiramente, cada série temporal foi separada em série de treinamento e série de teste, e então utilizou-se a metodologia moving block bootstrap aplicada à série de treinamento para gerar diferentes séries reamostradas, realizar a previsão de cada uma delas e combiná-las, obtendo-se assim uma previsão final combinada. Posteriormente, a série de teste foi utilizada para calcular a acurácia dos modelos, individual e combinado. Foram realizados um estudo com séries simuladas e uma aplicação com séries temporais reais mensais. O modelo escolhido e ajustado para cada uma das séries foi obtido através da função auto.arima(), disponibilizada pelo pacote forecast do software R. As medidas de acurácia utilizadas foram o erro quadrático médio e sua raiz, o erro percentual absoluto médio arcotangente e o erro percentual absoluto médio simétrico. Ao final do estudo, explorou-se o impacto que a variação dos parâmetros da reamostragem do modelo combinado causa na previsão e foram realizadas comparações entre os métodos de previsão combinado e individual. |
id |
USP_9430e27d6a61061e4da7c5e1672473ab |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27012022-105655 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Método bagging para aprimoramento de previsões de séries temporaisBagging method for improving time series forecastsBaggingBaggingBootstrapBootstrapForecastMoving Block bootstrapMoving block bootstrapPrevisãoSéries temporaisTime seriesDiferentes metodologias são propostas e exploradas com o intuito de reduzir o erro de previsão de séries temporais. Uma estratégia que vem se apresentando bastante promissora consiste em combinar diferentes previsões de diferentes modelos a fim de se obter uma melhor acurácia, ou seja, um menor erro de previsão. Este trabalho teve como objetivo realizar um estudo e aplicação do método bootstrap aggregating, mais conhecido como bagging, para aprimorar previsões de séries temporais. Primeiramente, cada série temporal foi separada em série de treinamento e série de teste, e então utilizou-se a metodologia moving block bootstrap aplicada à série de treinamento para gerar diferentes séries reamostradas, realizar a previsão de cada uma delas e combiná-las, obtendo-se assim uma previsão final combinada. Posteriormente, a série de teste foi utilizada para calcular a acurácia dos modelos, individual e combinado. Foram realizados um estudo com séries simuladas e uma aplicação com séries temporais reais mensais. O modelo escolhido e ajustado para cada uma das séries foi obtido através da função auto.arima(), disponibilizada pelo pacote forecast do software R. As medidas de acurácia utilizadas foram o erro quadrático médio e sua raiz, o erro percentual absoluto médio arcotangente e o erro percentual absoluto médio simétrico. Ao final do estudo, explorou-se o impacto que a variação dos parâmetros da reamostragem do modelo combinado causa na previsão e foram realizadas comparações entre os métodos de previsão combinado e individual.Different methodologies are proposed and explored aiming to reduce time series forecasting error. A promising approach consists in combining different forecasts from different models in order to get a better accuracy, i.e., a smaller forecast error. This work aims to review and apply the bootstrap aggregating method, also known as bagging, in order to improve time series forecasting. First, each time series is divided into training and testing time series, and then the moving block bootstrap methodology is applied to the training series to generate different resampled time series, and then forecasting for each one of the series is performed and combined, thus obtaining the final combined forecast. The test data set is used to calculate the accuracy of the models, individual and combined. A simulation study of time series and application to a real time series data sets are presented. The chosen and fitted model for each of the time series was obtained by using the function auto.arima(), available from forecast package, from R software. The accuracy measurements used were the mean square error and its root, mean arctangent absolute percentage error and the symmetric mean absolute percentage error. Finally, the impact on the forecasts of the combined model by varying the resampling method parameters was explored and comparisons between the combined and individual forecasting methods were also carried out.Biblioteca Digitais de Teses e Dissertações da USPAndrade Filho, Marinho Gomes deDiniz, Carlos Alberto RibeiroCamargo, Juliana Shibaki2021-10-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-01-27T14:11:02Zoai:teses.usp.br:tde-27012022-105655Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-27T14:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Método bagging para aprimoramento de previsões de séries temporais Bagging method for improving time series forecasts |
title |
Método bagging para aprimoramento de previsões de séries temporais |
spellingShingle |
Método bagging para aprimoramento de previsões de séries temporais Camargo, Juliana Shibaki Bagging Bagging Bootstrap Bootstrap Forecast Moving Block bootstrap Moving block bootstrap Previsão Séries temporais Time series |
title_short |
Método bagging para aprimoramento de previsões de séries temporais |
title_full |
Método bagging para aprimoramento de previsões de séries temporais |
title_fullStr |
Método bagging para aprimoramento de previsões de séries temporais |
title_full_unstemmed |
Método bagging para aprimoramento de previsões de séries temporais |
title_sort |
Método bagging para aprimoramento de previsões de séries temporais |
author |
Camargo, Juliana Shibaki |
author_facet |
Camargo, Juliana Shibaki |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade Filho, Marinho Gomes de Diniz, Carlos Alberto Ribeiro |
dc.contributor.author.fl_str_mv |
Camargo, Juliana Shibaki |
dc.subject.por.fl_str_mv |
Bagging Bagging Bootstrap Bootstrap Forecast Moving Block bootstrap Moving block bootstrap Previsão Séries temporais Time series |
topic |
Bagging Bagging Bootstrap Bootstrap Forecast Moving Block bootstrap Moving block bootstrap Previsão Séries temporais Time series |
description |
Diferentes metodologias são propostas e exploradas com o intuito de reduzir o erro de previsão de séries temporais. Uma estratégia que vem se apresentando bastante promissora consiste em combinar diferentes previsões de diferentes modelos a fim de se obter uma melhor acurácia, ou seja, um menor erro de previsão. Este trabalho teve como objetivo realizar um estudo e aplicação do método bootstrap aggregating, mais conhecido como bagging, para aprimorar previsões de séries temporais. Primeiramente, cada série temporal foi separada em série de treinamento e série de teste, e então utilizou-se a metodologia moving block bootstrap aplicada à série de treinamento para gerar diferentes séries reamostradas, realizar a previsão de cada uma delas e combiná-las, obtendo-se assim uma previsão final combinada. Posteriormente, a série de teste foi utilizada para calcular a acurácia dos modelos, individual e combinado. Foram realizados um estudo com séries simuladas e uma aplicação com séries temporais reais mensais. O modelo escolhido e ajustado para cada uma das séries foi obtido através da função auto.arima(), disponibilizada pelo pacote forecast do software R. As medidas de acurácia utilizadas foram o erro quadrático médio e sua raiz, o erro percentual absoluto médio arcotangente e o erro percentual absoluto médio simétrico. Ao final do estudo, explorou-se o impacto que a variação dos parâmetros da reamostragem do modelo combinado causa na previsão e foram realizadas comparações entre os métodos de previsão combinado e individual. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826319069353082880 |