Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos

Detalhes bibliográficos
Autor(a) principal: Pimentel, Carlos Eduardo Hirth
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-20032020-172551/
Resumo: O objetivo deste trabalho é apresentar alguns resultados por meio de duas técnicas baseadas na análise teórica e computacional de processos a tempo continuo inspirados em sistemas biológicos, cuja dinâmica é influenciada pela natureza estocástica de seus entes constituintes. Na primeira parte, estudamos um sistema de partículas denominado de modelo dos sapos (MS), no qual existem dois tipos de partículas: as inativas e as ativas, de forma que, cada partícula ativa executa um passeio aleatório, percorrendo um grafo finito Gn. Entre as quantidades de interesse temos, as proporções de cada estado possível ao longo do tempo e a proporção final de vértices visitados ou não, por partículas ativas. Nesta parte da tese, procuramos a informação sobre estas quantidades para diferentes grafos finitos. A efetividade desse modelo foi analisada por meio das três seguintes abordagens: Método das cadeias de Markov dependentes da densidade (CMDD), abordagem das aproximações via campo médio (ACM) e as simulações computacionais (SC). Nos dois primeiros casos, foram determinados os seus sistemas de equações das quantidades no limite determinístico. Essas abordagens foram avaliadas nos grafos completos Kn, bipartidos completos Kn1,n2 e nos grafos cíclicos Cn,c. Os resultados comparativos obtidos sugerem uma relação entre a densidade do grafo e o desempenho das abordagens para a modelagem do MS. As avaliações dos resultados indicam que, no caso de grafos considerados densamente conectados as três abordagens são adequadas para o modelo. Para os casos considerados esparsos, a abordagem SC se apresentou como a mais indicada para o MS. Na Parte II, considera-se um modelo baseado em equações diferencias estocásticas aplicado um sistema ecológico constituído por um predador especializado em caçar um tipo de presa, apenas no seu estágio adulto. Paralelamente a isto, supomos que a taxa de mortalidade do predador é afetada por uma aleatoriedade do meio ambiente. Discutimos sobre a influência desta premissa no comportamento dinâmico do modelo através de uma análise teórica e computacional e mostramos que as equações diferencias estocásticas fornecem um modelo mais adequado a este sistema.
id USP_9457d63efa6ab588c7ed8ccb29755816
oai_identifier_str oai:teses.usp.br:tde-20032020-172551
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicosTheoretical and computational analysis of stochastic processes inspired by biological systemsAproximação via campo médioCadeia de Markov a tempo contínuoComplex SystemsContinuous time Markov chainFrog modelMean-Field aproximationsModelo dos saposModelo predador-presaPredator-Prey modelsSistemas complexosO objetivo deste trabalho é apresentar alguns resultados por meio de duas técnicas baseadas na análise teórica e computacional de processos a tempo continuo inspirados em sistemas biológicos, cuja dinâmica é influenciada pela natureza estocástica de seus entes constituintes. Na primeira parte, estudamos um sistema de partículas denominado de modelo dos sapos (MS), no qual existem dois tipos de partículas: as inativas e as ativas, de forma que, cada partícula ativa executa um passeio aleatório, percorrendo um grafo finito Gn. Entre as quantidades de interesse temos, as proporções de cada estado possível ao longo do tempo e a proporção final de vértices visitados ou não, por partículas ativas. Nesta parte da tese, procuramos a informação sobre estas quantidades para diferentes grafos finitos. A efetividade desse modelo foi analisada por meio das três seguintes abordagens: Método das cadeias de Markov dependentes da densidade (CMDD), abordagem das aproximações via campo médio (ACM) e as simulações computacionais (SC). Nos dois primeiros casos, foram determinados os seus sistemas de equações das quantidades no limite determinístico. Essas abordagens foram avaliadas nos grafos completos Kn, bipartidos completos Kn1,n2 e nos grafos cíclicos Cn,c. Os resultados comparativos obtidos sugerem uma relação entre a densidade do grafo e o desempenho das abordagens para a modelagem do MS. As avaliações dos resultados indicam que, no caso de grafos considerados densamente conectados as três abordagens são adequadas para o modelo. Para os casos considerados esparsos, a abordagem SC se apresentou como a mais indicada para o MS. Na Parte II, considera-se um modelo baseado em equações diferencias estocásticas aplicado um sistema ecológico constituído por um predador especializado em caçar um tipo de presa, apenas no seu estágio adulto. Paralelamente a isto, supomos que a taxa de mortalidade do predador é afetada por uma aleatoriedade do meio ambiente. Discutimos sobre a influência desta premissa no comportamento dinâmico do modelo através de uma análise teórica e computacional e mostramos que as equações diferencias estocásticas fornecem um modelo mais adequado a este sistema.The aim of this work is to present two methodologies based on the theoretical and computational analysis of continuous time stochastic processes inspired by biological systems, whose dynamics are influenced by the stochastic nature of their constituent entities. In the first part, we studied a particle system called the frog model (MS), in which there are two types of particles: the inactive and the active, so that each active particle runs a random walk, running through a finite graph Gn. Among the quantities of interest we have the proportions of each possible state over time and the final proportion of vertices visited or not visited by active particles. In this part of the thesis, we look for information about this proportion for different finite graphs. The effectiveness of the modeling techniques were analyzed using the following three approaches: Density-dependent Markov chains method (CMDD), approaching the mean field approaches (ACM) and computer simulations (SC). In the first two theoretical cases, their systems of equations were also obtained at a deterministic limit. These approaches were evaluated for the complete graphs Kn, complete bipartites graphs Kn1,n2, and for the cyclic graphs Cn,c. The comparative results suggest a relationship between the density of the graph and the performance of the approaches in the MS and in this case, indicate that the three approaches are suitable for the M.S. for densely connected graphs. For cases considered sparse, the computational approach SC was presented as the most indicated. In the Part II, a model based on stochastic differential equations is applied, using an ecological system consisting of a predator specialized in hunting a type of prey, only in its adult stage. Parallel to this, we assume that the predators mortality rate is affected by a randomness of the environment. We discuss the influence of this premise on the dynamic behavior of the model through a theoretical and computational analysis and show that the stochastic differential equations provide a more adequate model for this system.Biblioteca Digitais de Teses e Dissertações da USPRodriguez, Pablo MartinPimentel, Carlos Eduardo Hirth2020-01-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-20032020-172551/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-03-26T13:43:02Zoai:teses.usp.br:tde-20032020-172551Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-26T13:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
Theoretical and computational analysis of stochastic processes inspired by biological systems
title Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
spellingShingle Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
Pimentel, Carlos Eduardo Hirth
Aproximação via campo médio
Cadeia de Markov a tempo contínuo
Complex Systems
Continuous time Markov chain
Frog model
Mean-Field aproximations
Modelo dos sapos
Modelo predador-presa
Predator-Prey models
Sistemas complexos
title_short Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
title_full Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
title_fullStr Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
title_full_unstemmed Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
title_sort Análise teórica e computacional de processos estocásticos inspirados em sistemas biológicos
author Pimentel, Carlos Eduardo Hirth
author_facet Pimentel, Carlos Eduardo Hirth
author_role author
dc.contributor.none.fl_str_mv Rodriguez, Pablo Martin
dc.contributor.author.fl_str_mv Pimentel, Carlos Eduardo Hirth
dc.subject.por.fl_str_mv Aproximação via campo médio
Cadeia de Markov a tempo contínuo
Complex Systems
Continuous time Markov chain
Frog model
Mean-Field aproximations
Modelo dos sapos
Modelo predador-presa
Predator-Prey models
Sistemas complexos
topic Aproximação via campo médio
Cadeia de Markov a tempo contínuo
Complex Systems
Continuous time Markov chain
Frog model
Mean-Field aproximations
Modelo dos sapos
Modelo predador-presa
Predator-Prey models
Sistemas complexos
description O objetivo deste trabalho é apresentar alguns resultados por meio de duas técnicas baseadas na análise teórica e computacional de processos a tempo continuo inspirados em sistemas biológicos, cuja dinâmica é influenciada pela natureza estocástica de seus entes constituintes. Na primeira parte, estudamos um sistema de partículas denominado de modelo dos sapos (MS), no qual existem dois tipos de partículas: as inativas e as ativas, de forma que, cada partícula ativa executa um passeio aleatório, percorrendo um grafo finito Gn. Entre as quantidades de interesse temos, as proporções de cada estado possível ao longo do tempo e a proporção final de vértices visitados ou não, por partículas ativas. Nesta parte da tese, procuramos a informação sobre estas quantidades para diferentes grafos finitos. A efetividade desse modelo foi analisada por meio das três seguintes abordagens: Método das cadeias de Markov dependentes da densidade (CMDD), abordagem das aproximações via campo médio (ACM) e as simulações computacionais (SC). Nos dois primeiros casos, foram determinados os seus sistemas de equações das quantidades no limite determinístico. Essas abordagens foram avaliadas nos grafos completos Kn, bipartidos completos Kn1,n2 e nos grafos cíclicos Cn,c. Os resultados comparativos obtidos sugerem uma relação entre a densidade do grafo e o desempenho das abordagens para a modelagem do MS. As avaliações dos resultados indicam que, no caso de grafos considerados densamente conectados as três abordagens são adequadas para o modelo. Para os casos considerados esparsos, a abordagem SC se apresentou como a mais indicada para o MS. Na Parte II, considera-se um modelo baseado em equações diferencias estocásticas aplicado um sistema ecológico constituído por um predador especializado em caçar um tipo de presa, apenas no seu estágio adulto. Paralelamente a isto, supomos que a taxa de mortalidade do predador é afetada por uma aleatoriedade do meio ambiente. Discutimos sobre a influência desta premissa no comportamento dinâmico do modelo através de uma análise teórica e computacional e mostramos que as equações diferencias estocásticas fornecem um modelo mais adequado a este sistema.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-20032020-172551/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-20032020-172551/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257151409487872