Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons

Detalhes bibliográficos
Autor(a) principal: Cuziol, Vitor Valsichi
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/59/59143/tde-22062020-195016/
Resumo: Transcranial magnetic stimulation (TMS) is a noninvasive technique of brain stimulation that has been widely used in both cognitive function studies and clinical applications. However, the biophysical mechanisms by which TMS activates cortical neurons and networks are still poorly understood. The present work aimed to create a computational model of the neuronal effects of single-pulse TMS combining compartmental models of neurons and a subject-specific electric field solution. The model consists of neurons of cortical layers L2/3 and L5, transformed to conform to cortical curvature and subjected to extracellular quasipotentials following a monophasic current waveform. First, excitation thresholds and sites of action potential initiation are determined through simulation of membrane dynamics with neurons being synaptically isolated, then epidural response is simulated by connecting them in a feedforward network. Excitation occured at morphological discontinuities such as axon terminals, and thresholds were mostly correlated with total electric field magnitude instead of the component normal to cortex. Coil orientations perpendicular to central sulcus presented lowest thresholds, with L5 neurons, in general, being more easily excitable than L2/3. The simulated epidural response of the network presented amplitude and duration in accord with experimental recordings, supporting the hypothesis of transsynaptic activation, with the time of propagation of action potentials in L2/3 axonal arbors suggesting a role in latency of I1-waves. By incorporating neuroanatomical factors to a neuronal network, the current model offers a computational framework for exploring TMS parameters and advancing the personalized use of neurostimulation.
id USP_951c8763c30744fef083246a4293e4c1
oai_identifier_str oai:teses.usp.br:tde-22062020-195016
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computational modeling of the effects of transcranial magnetic stimulation on cortical neuronsModelagem computacional dos efeitos da estimulação magnética transcraniana sobre neurônios corticaisAtivação neuronalComputational modelComputational neuroscienceEstimulação magnética transcranianaModelo computacionalNeurociência computacionalNeuroestimulaçãoNeuronal activationNeurostimulationTranscranial magnetic stimulationTranscranial magnetic stimulation (TMS) is a noninvasive technique of brain stimulation that has been widely used in both cognitive function studies and clinical applications. However, the biophysical mechanisms by which TMS activates cortical neurons and networks are still poorly understood. The present work aimed to create a computational model of the neuronal effects of single-pulse TMS combining compartmental models of neurons and a subject-specific electric field solution. The model consists of neurons of cortical layers L2/3 and L5, transformed to conform to cortical curvature and subjected to extracellular quasipotentials following a monophasic current waveform. First, excitation thresholds and sites of action potential initiation are determined through simulation of membrane dynamics with neurons being synaptically isolated, then epidural response is simulated by connecting them in a feedforward network. Excitation occured at morphological discontinuities such as axon terminals, and thresholds were mostly correlated with total electric field magnitude instead of the component normal to cortex. Coil orientations perpendicular to central sulcus presented lowest thresholds, with L5 neurons, in general, being more easily excitable than L2/3. The simulated epidural response of the network presented amplitude and duration in accord with experimental recordings, supporting the hypothesis of transsynaptic activation, with the time of propagation of action potentials in L2/3 axonal arbors suggesting a role in latency of I1-waves. By incorporating neuroanatomical factors to a neuronal network, the current model offers a computational framework for exploring TMS parameters and advancing the personalized use of neurostimulation.Estimulação magnética transcraniana (TMS) é uma técnica não invasiva de estimulação cerebral que é amplamente usada em estudos de funções cognitivas e aplicações clínicas. No entanto, os mecanismos biofísicos pelos quais a TMS ativa neurônios e redes corticais ainda são pouco compreendidos. O presente trabalho teve como objetivo criar um modelo computacional dos efeitos neuronais da TMS de pulso único, combinando modelos compartimentais de neurônios e solução de campo elétrico em anatomia individual. O modelo consiste de neurônios das camadas L2/3 e L5, transformados conforme a curvatura cortical e submetidos a quase-potencias extracelulares que seguem um pulso de onda monofásico. Primeiro, limiares de excitação e locais de início do potencial de ação são determinados por meio da simulação da dinâmica de membrana com neurônios sinapticamente isolados, e então a resposta epidural é simulada ao conectá-los em uma rede em alimentação direta. A excitação ocorreu em descontinuidades morfológicas como terminais axonais, e limiares estavam no geral correlacionados com a magnitude do campo elétrico total, ao invés do componente normal ao córtex. Orientações de bobina perpendiculares ao sulco central apresentaram menores limiares, com neurônios da L5, em geral, sendo mais facilmente excitados do que os da L2/3. A resposta epidural simulada pela rede apresentou amplitude e duração em acordo com o medidas experimentais, suportando a hipótese de ativação transsináptica, com o tempo de propagação de potenciais de ação em árvores axonais da L2/3 sugerindo um papel na latência de ondas I1. Ao incorporar fatores neuroanatômicos a uma rede neuronal, o presente modelo oferece um arcabouço computacional para explorar parâmetros da TMS e avançar o uso personalizado de neuroestimulação.Biblioteca Digitais de Teses e Dissertações da USPMurta Junior, Luiz OtavioCuziol, Vitor Valsichi2020-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59143/tde-22062020-195016/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-07-14T20:11:02Zoai:teses.usp.br:tde-22062020-195016Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-07-14T20:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
Modelagem computacional dos efeitos da estimulação magnética transcraniana sobre neurônios corticais
title Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
spellingShingle Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
Cuziol, Vitor Valsichi
Ativação neuronal
Computational model
Computational neuroscience
Estimulação magnética transcraniana
Modelo computacional
Neurociência computacional
Neuroestimulação
Neuronal activation
Neurostimulation
Transcranial magnetic stimulation
title_short Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
title_full Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
title_fullStr Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
title_full_unstemmed Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
title_sort Computational modeling of the effects of transcranial magnetic stimulation on cortical neurons
author Cuziol, Vitor Valsichi
author_facet Cuziol, Vitor Valsichi
author_role author
dc.contributor.none.fl_str_mv Murta Junior, Luiz Otavio
dc.contributor.author.fl_str_mv Cuziol, Vitor Valsichi
dc.subject.por.fl_str_mv Ativação neuronal
Computational model
Computational neuroscience
Estimulação magnética transcraniana
Modelo computacional
Neurociência computacional
Neuroestimulação
Neuronal activation
Neurostimulation
Transcranial magnetic stimulation
topic Ativação neuronal
Computational model
Computational neuroscience
Estimulação magnética transcraniana
Modelo computacional
Neurociência computacional
Neuroestimulação
Neuronal activation
Neurostimulation
Transcranial magnetic stimulation
description Transcranial magnetic stimulation (TMS) is a noninvasive technique of brain stimulation that has been widely used in both cognitive function studies and clinical applications. However, the biophysical mechanisms by which TMS activates cortical neurons and networks are still poorly understood. The present work aimed to create a computational model of the neuronal effects of single-pulse TMS combining compartmental models of neurons and a subject-specific electric field solution. The model consists of neurons of cortical layers L2/3 and L5, transformed to conform to cortical curvature and subjected to extracellular quasipotentials following a monophasic current waveform. First, excitation thresholds and sites of action potential initiation are determined through simulation of membrane dynamics with neurons being synaptically isolated, then epidural response is simulated by connecting them in a feedforward network. Excitation occured at morphological discontinuities such as axon terminals, and thresholds were mostly correlated with total electric field magnitude instead of the component normal to cortex. Coil orientations perpendicular to central sulcus presented lowest thresholds, with L5 neurons, in general, being more easily excitable than L2/3. The simulated epidural response of the network presented amplitude and duration in accord with experimental recordings, supporting the hypothesis of transsynaptic activation, with the time of propagation of action potentials in L2/3 axonal arbors suggesting a role in latency of I1-waves. By incorporating neuroanatomical factors to a neuronal network, the current model offers a computational framework for exploring TMS parameters and advancing the personalized use of neurostimulation.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/59/59143/tde-22062020-195016/
url https://www.teses.usp.br/teses/disponiveis/59/59143/tde-22062020-195016/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090988247875584