MPSF: cloud scheduling framework for distributed workflow execution.

Detalhes bibliográficos
Autor(a) principal: Gonzalez, Nelson Mimura
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03032017-083914/
Resumo: Cloud computing represents a distributed computing paradigm that gained notoriety due to its properties related to on-demand elastic and dynamic resource provisioning. These characteristics are highly desirable for the execution of workflows, in particular scientific workflows that required a great amount of computing resources and that handle large-scale data. One of the main questions in this sense is how to manage resources of one or more cloud infrastructures to execute workflows while optimizing resource utilization and minimizing the total duration of the execution of tasks (makespan). The more complex the infrastructure and the tasks to be executed are, the higher the risk of incorrectly estimating the amount of resources to be assigned to each task, leading to both performance and monetary costs. Scenarios which are inherently more complex, such as hybrid and multiclouds, rarely are considered by existing resource management solutions. Moreover, a thorough research of relevant related work revealed that most of the solutions do not address data-intensive workflows, a characteristic that is increasingly evident for modern scientific workflows. In this sense, this proposal presents MPSF, the Multiphase Proactive Scheduling Framework, a cloud resource management solution based on multiple scheduling phases that continuously assess the system to optimize resource utilization and task distribution. MPSF defines models to describe and characterize workflows and resources. MPSF also defines performance and reliability models to improve load distribution among nodes and to mitigate the effects of performance fluctuations and potential failures that might occur in the system. Finally, MPSF defines a framework and an architecture to integrate all these components and deliver a solution that can be implemented and tested in real applications. Experimental results show that MPSF is able to predict with much better accuracy the duration of workflows and workflow phases, as well as providing performance gains compared to greedy approaches.
id USP_95834c1cd5487461ee3625a388cebf78
oai_identifier_str oai:teses.usp.br:tde-03032017-083914
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling MPSF: cloud scheduling framework for distributed workflow execution.MPSF: um arcabouço para escalonamento em computação em nuvem para execução distribuída de fluxos de trabalho.Cloud computingComputação em nuvemGerenciamento de recursosResource managementCloud computing represents a distributed computing paradigm that gained notoriety due to its properties related to on-demand elastic and dynamic resource provisioning. These characteristics are highly desirable for the execution of workflows, in particular scientific workflows that required a great amount of computing resources and that handle large-scale data. One of the main questions in this sense is how to manage resources of one or more cloud infrastructures to execute workflows while optimizing resource utilization and minimizing the total duration of the execution of tasks (makespan). The more complex the infrastructure and the tasks to be executed are, the higher the risk of incorrectly estimating the amount of resources to be assigned to each task, leading to both performance and monetary costs. Scenarios which are inherently more complex, such as hybrid and multiclouds, rarely are considered by existing resource management solutions. Moreover, a thorough research of relevant related work revealed that most of the solutions do not address data-intensive workflows, a characteristic that is increasingly evident for modern scientific workflows. In this sense, this proposal presents MPSF, the Multiphase Proactive Scheduling Framework, a cloud resource management solution based on multiple scheduling phases that continuously assess the system to optimize resource utilization and task distribution. MPSF defines models to describe and characterize workflows and resources. MPSF also defines performance and reliability models to improve load distribution among nodes and to mitigate the effects of performance fluctuations and potential failures that might occur in the system. Finally, MPSF defines a framework and an architecture to integrate all these components and deliver a solution that can be implemented and tested in real applications. Experimental results show that MPSF is able to predict with much better accuracy the duration of workflows and workflow phases, as well as providing performance gains compared to greedy approaches.A computação em nuvem representa um paradigma de computação distribuída que ganhoudestaque devido a aspectos relacionados à obtenção de recursos sob demanda de modo elástico e dinâmico. Estas características são consideravelmente desejáveis para a execução de tarefas relacionadas a fluxos de trabalho científicos, que exigem grande quantidade de recursos computacionais e grande fluxo de dados. Uma das principais questões neste sentido é como gerenciar os recursos de uma ou mais infraestruturas de nuvem para execução de fluxos de trabalho de modo a otimizar a utilização destes recursos e minimizar o tempo total de execução das tarefas. Quanto mais complexa a infraestrutura e as tarefas a serem executadas, maior o risco de estimar incorretamente a quantidade de recursos destinada para cada tarefa, levando a prejuízos não só em termos de tempo de execução como também financeiros. Cenários inerentemente mais complexos como nuvens híbridas e múltiplas nuvens raramente são considerados em soluções existentes de gerenciamento de recursos para nuvens. Além destes fatores, a maioria das soluções não oferece mecanismos claros para tratar de fluxos de trabalho com alta intensidade de dados, característica cada vez mais proeminente em fluxos de trabalho moderno. Neste sentido, esta proposta apresenta MPSF, uma solução de gerenciamento de recursos baseada em múltiplas fases de gerenciamento baseadas em mecanismos dinâmicos de alocação de tarefas. MPSF define modelos para descrever e caracterizar fluxos de trabalho e recursos de modo a suportar cenários simples e complexos, como nuvens híbridas e nuvens integradas. MPSF também define modelos de desempenho e confiabilidade para melhor distribuir a carga e para combater os efeitos de possíveis falhas que possam ocorrer no sistema. Por fim, MPSF define um arcabouço e um arquitetura que integra todos estes componentes de modo a definir uma solução que possa ser implementada e utilizada em cenários reais. Testes experimentais indicam que MPSF não só é capaz de prever com maior precisão a duração da execução de tarefas, como também consegue otimizar a execução das mesmas, especialmente para tarefas que demandam alto poder computacional e alta quantidade de dados.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, Tereza Cristina Melo de BritoGonzalez, Nelson Mimura2016-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-03032017-083914/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:51:23Zoai:teses.usp.br:tde-03032017-083914Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:51:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv MPSF: cloud scheduling framework for distributed workflow execution.
MPSF: um arcabouço para escalonamento em computação em nuvem para execução distribuída de fluxos de trabalho.
title MPSF: cloud scheduling framework for distributed workflow execution.
spellingShingle MPSF: cloud scheduling framework for distributed workflow execution.
Gonzalez, Nelson Mimura
Cloud computing
Computação em nuvem
Gerenciamento de recursos
Resource management
title_short MPSF: cloud scheduling framework for distributed workflow execution.
title_full MPSF: cloud scheduling framework for distributed workflow execution.
title_fullStr MPSF: cloud scheduling framework for distributed workflow execution.
title_full_unstemmed MPSF: cloud scheduling framework for distributed workflow execution.
title_sort MPSF: cloud scheduling framework for distributed workflow execution.
author Gonzalez, Nelson Mimura
author_facet Gonzalez, Nelson Mimura
author_role author
dc.contributor.none.fl_str_mv Carvalho, Tereza Cristina Melo de Brito
dc.contributor.author.fl_str_mv Gonzalez, Nelson Mimura
dc.subject.por.fl_str_mv Cloud computing
Computação em nuvem
Gerenciamento de recursos
Resource management
topic Cloud computing
Computação em nuvem
Gerenciamento de recursos
Resource management
description Cloud computing represents a distributed computing paradigm that gained notoriety due to its properties related to on-demand elastic and dynamic resource provisioning. These characteristics are highly desirable for the execution of workflows, in particular scientific workflows that required a great amount of computing resources and that handle large-scale data. One of the main questions in this sense is how to manage resources of one or more cloud infrastructures to execute workflows while optimizing resource utilization and minimizing the total duration of the execution of tasks (makespan). The more complex the infrastructure and the tasks to be executed are, the higher the risk of incorrectly estimating the amount of resources to be assigned to each task, leading to both performance and monetary costs. Scenarios which are inherently more complex, such as hybrid and multiclouds, rarely are considered by existing resource management solutions. Moreover, a thorough research of relevant related work revealed that most of the solutions do not address data-intensive workflows, a characteristic that is increasingly evident for modern scientific workflows. In this sense, this proposal presents MPSF, the Multiphase Proactive Scheduling Framework, a cloud resource management solution based on multiple scheduling phases that continuously assess the system to optimize resource utilization and task distribution. MPSF defines models to describe and characterize workflows and resources. MPSF also defines performance and reliability models to improve load distribution among nodes and to mitigate the effects of performance fluctuations and potential failures that might occur in the system. Finally, MPSF defines a framework and an architecture to integrate all these components and deliver a solution that can be implemented and tested in real applications. Experimental results show that MPSF is able to predict with much better accuracy the duration of workflows and workflow phases, as well as providing performance gains compared to greedy approaches.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03032017-083914/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03032017-083914/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256483616522240