Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down

Detalhes bibliográficos
Autor(a) principal: Neves, Evelina Maria de Almeida
Data de Publicação: 2000
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14032014-103419/
Resumo: Uma das tarefas básicas dos mecanismos atencionais é decidir qual a localização dentro do campo visual, em que devemos prestar atenção primeiro. Um objeto que contenha características distintas, tais como orientação, forma, cor, tamanho, brilho, textura, etc. diferentes, pode atrair a atenção de uma maneira \"bottom-up\". A informação \"top-down\" baseia-se no conhecimento prévio e tem uma grande influência nas localizações atendidas. Inspirado nos mecanismos da Atenção Visual Humana, embora sem a pretensão de simulá-la, este trabalho prevê o desenvolvimento de uma nova metodologia que integra os dois tipos de informações: \"bottom-up\" e \"top-down\". Características \"bottom-up\" são geradas a partir de Momentos e essas informações são utilizadas em mapas de saliência, enquanto que um conhecimento prévio é utilizado para gerar pistas \"top-down\". Neste trabalho, desenvolveu-se uma metodologia específica para a busca e o reconhecimento visual em cenas com múltiplos objetos, utilizando para isso uma rede \"fuzzy\" contendo três subsistemas \"fuzzy\". Dada uma imagem de entrada, o objetivo consiste em se detectar regiões que possam conter informações mais significativas, a fim de que se possa guiar e restringir processamentos mais complexos. A inclusão de mecanismos de atenção (seleção de uma região de interesse dentro da imagem) é de fundamental importância pois os resultados obtidos pelo método podem ser usados para controlar a aquisição da imagem de uma maneira dinâmica. O modelo proposto está estruturado em três estágios principais: O primeiro estágio consiste em se segmentar os objetos e extrair características globais dos mesmos baseadas principalmente na teoria dos momentos, tais como tamanho, orientação, formato e distância e também média de nível de cinza. Por intermédio da comparação de um objeto com os outros presentes na cena, características \"bottom-up\" de conspicuidade são usadas para guiar a atenção ao objeto mais diferente. Por intermédio do uso da lógica \"fuzzy\" é possível inferir com grande flexibilidade algumas regras de decisão baseadas nos princípios de percepção visual tais como as leis Gestalt. O segundo estágio consiste de um subsistema \"fuzzy top-down\" que combina diferentes características de acordo com a relevância das mesmas em diferentes tarefas. Finalmente, o terceiro estágio consiste de um subsistema \"fuzzy\" que integra as informações obtidas dos subsistemas anteriores e fornece um índice geral de saliência, e indica a provável localização do objeto a ser reconhecido. A nova abordagem foi testada com objetos geométricos levando-se em consideração as características que atraem a atenção dos serem humanos
id USP_9585ab935785367f02ae9582aa20dd78
oai_identifier_str oai:teses.usp.br:tde-14032014-103419
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-downAttentional strategy for visual search and invariant object recognition based on bottom-up and top-down feature integrationAtenção visualBottom-up processingBusca visualFeature integrationFuzzy logicGestaltIntegração de característicasInvariant recognitionLógica FuzzyMapas de saliênciaMoment theoryPercepção visualPerceptionProcessamento Bottom-up e Top-downReconhecimento invarianteSalience mapsSeleçãoSelectionTeoria dos momentosTop-down processingVisual attentionVisual searchUma das tarefas básicas dos mecanismos atencionais é decidir qual a localização dentro do campo visual, em que devemos prestar atenção primeiro. Um objeto que contenha características distintas, tais como orientação, forma, cor, tamanho, brilho, textura, etc. diferentes, pode atrair a atenção de uma maneira \"bottom-up\". A informação \"top-down\" baseia-se no conhecimento prévio e tem uma grande influência nas localizações atendidas. Inspirado nos mecanismos da Atenção Visual Humana, embora sem a pretensão de simulá-la, este trabalho prevê o desenvolvimento de uma nova metodologia que integra os dois tipos de informações: \"bottom-up\" e \"top-down\". Características \"bottom-up\" são geradas a partir de Momentos e essas informações são utilizadas em mapas de saliência, enquanto que um conhecimento prévio é utilizado para gerar pistas \"top-down\". Neste trabalho, desenvolveu-se uma metodologia específica para a busca e o reconhecimento visual em cenas com múltiplos objetos, utilizando para isso uma rede \"fuzzy\" contendo três subsistemas \"fuzzy\". Dada uma imagem de entrada, o objetivo consiste em se detectar regiões que possam conter informações mais significativas, a fim de que se possa guiar e restringir processamentos mais complexos. A inclusão de mecanismos de atenção (seleção de uma região de interesse dentro da imagem) é de fundamental importância pois os resultados obtidos pelo método podem ser usados para controlar a aquisição da imagem de uma maneira dinâmica. O modelo proposto está estruturado em três estágios principais: O primeiro estágio consiste em se segmentar os objetos e extrair características globais dos mesmos baseadas principalmente na teoria dos momentos, tais como tamanho, orientação, formato e distância e também média de nível de cinza. Por intermédio da comparação de um objeto com os outros presentes na cena, características \"bottom-up\" de conspicuidade são usadas para guiar a atenção ao objeto mais diferente. Por intermédio do uso da lógica \"fuzzy\" é possível inferir com grande flexibilidade algumas regras de decisão baseadas nos princípios de percepção visual tais como as leis Gestalt. O segundo estágio consiste de um subsistema \"fuzzy top-down\" que combina diferentes características de acordo com a relevância das mesmas em diferentes tarefas. Finalmente, o terceiro estágio consiste de um subsistema \"fuzzy\" que integra as informações obtidas dos subsistemas anteriores e fornece um índice geral de saliência, e indica a provável localização do objeto a ser reconhecido. A nova abordagem foi testada com objetos geométricos levando-se em consideração as características que atraem a atenção dos serem humanosOne of the basic tasks assigned to the human attentional mechanisms is to decide which location in the visual field we must pay attention first. An object containing distinctive features (such as different orientation, shape, color, size, shine, texture, etc.) can attract attention in a bottom-up way. Top-down information is based on the previous knowledge and has a large influence on the attended locations. Inspired on human visual attention mechanisms, although it doesn\'t want simulate it, this work presents a new methodology to integrate two different kind of information: bottom-up and top-down. Bottom-up features are obtained from Moment Theory and this information is used in salience maps, while a previous knowledge is used to create top-down hints. In this work, an specific methodology to visual search and recognition was developed to be applied to scenes containing multiple objects by a fuzzy net with three fuzzy subsystems. The aim of this methodology is to detect regions that may contain the most significant information, in order to guide and to restrict most complex processing. The inclusion of attentional mechanisms (the selection of a region of interest in the image) is fundamental and can be used to control the image acquisition in a dynamic way. The proposed model is structured in three main stages. The first stage segments the objects and extracts global features of them, based on the Moment Theory such as size, orientation, shape and distance and gray level average. By comparing one object with the other ones present in the scene, bottom-up features of conspicuity are used to guide the attention to the most different object. The Fuzzy Logic allows us to infer with great flexibility some of decision rules based on the visual perception principles such as the Gestalt Laws. The second stage is a top-down fuzzy subsystem that combines different features according to the relevance of them in different tasks. Finally, the third stage is a fuzzy subsystem that integrates the information obtained from the previous sub-systems and gives us a general salience index. The new methodology was tested in geometrical objects considering the feature that attracts attention to human beingsBiblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonNeves, Evelina Maria de Almeida2000-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-14032014-103419/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-14032014-103419Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
Attentional strategy for visual search and invariant object recognition based on bottom-up and top-down feature integration
title Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
spellingShingle Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
Neves, Evelina Maria de Almeida
Atenção visual
Bottom-up processing
Busca visual
Feature integration
Fuzzy logic
Gestalt
Integração de características
Invariant recognition
Lógica Fuzzy
Mapas de saliência
Moment theory
Percepção visual
Perception
Processamento Bottom-up e Top-down
Reconhecimento invariante
Salience maps
Seleção
Selection
Teoria dos momentos
Top-down processing
Visual attention
Visual search
title_short Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
title_full Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
title_fullStr Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
title_full_unstemmed Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
title_sort Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
author Neves, Evelina Maria de Almeida
author_facet Neves, Evelina Maria de Almeida
author_role author
dc.contributor.none.fl_str_mv Gonzaga, Adilson
dc.contributor.author.fl_str_mv Neves, Evelina Maria de Almeida
dc.subject.por.fl_str_mv Atenção visual
Bottom-up processing
Busca visual
Feature integration
Fuzzy logic
Gestalt
Integração de características
Invariant recognition
Lógica Fuzzy
Mapas de saliência
Moment theory
Percepção visual
Perception
Processamento Bottom-up e Top-down
Reconhecimento invariante
Salience maps
Seleção
Selection
Teoria dos momentos
Top-down processing
Visual attention
Visual search
topic Atenção visual
Bottom-up processing
Busca visual
Feature integration
Fuzzy logic
Gestalt
Integração de características
Invariant recognition
Lógica Fuzzy
Mapas de saliência
Moment theory
Percepção visual
Perception
Processamento Bottom-up e Top-down
Reconhecimento invariante
Salience maps
Seleção
Selection
Teoria dos momentos
Top-down processing
Visual attention
Visual search
description Uma das tarefas básicas dos mecanismos atencionais é decidir qual a localização dentro do campo visual, em que devemos prestar atenção primeiro. Um objeto que contenha características distintas, tais como orientação, forma, cor, tamanho, brilho, textura, etc. diferentes, pode atrair a atenção de uma maneira \"bottom-up\". A informação \"top-down\" baseia-se no conhecimento prévio e tem uma grande influência nas localizações atendidas. Inspirado nos mecanismos da Atenção Visual Humana, embora sem a pretensão de simulá-la, este trabalho prevê o desenvolvimento de uma nova metodologia que integra os dois tipos de informações: \"bottom-up\" e \"top-down\". Características \"bottom-up\" são geradas a partir de Momentos e essas informações são utilizadas em mapas de saliência, enquanto que um conhecimento prévio é utilizado para gerar pistas \"top-down\". Neste trabalho, desenvolveu-se uma metodologia específica para a busca e o reconhecimento visual em cenas com múltiplos objetos, utilizando para isso uma rede \"fuzzy\" contendo três subsistemas \"fuzzy\". Dada uma imagem de entrada, o objetivo consiste em se detectar regiões que possam conter informações mais significativas, a fim de que se possa guiar e restringir processamentos mais complexos. A inclusão de mecanismos de atenção (seleção de uma região de interesse dentro da imagem) é de fundamental importância pois os resultados obtidos pelo método podem ser usados para controlar a aquisição da imagem de uma maneira dinâmica. O modelo proposto está estruturado em três estágios principais: O primeiro estágio consiste em se segmentar os objetos e extrair características globais dos mesmos baseadas principalmente na teoria dos momentos, tais como tamanho, orientação, formato e distância e também média de nível de cinza. Por intermédio da comparação de um objeto com os outros presentes na cena, características \"bottom-up\" de conspicuidade são usadas para guiar a atenção ao objeto mais diferente. Por intermédio do uso da lógica \"fuzzy\" é possível inferir com grande flexibilidade algumas regras de decisão baseadas nos princípios de percepção visual tais como as leis Gestalt. O segundo estágio consiste de um subsistema \"fuzzy top-down\" que combina diferentes características de acordo com a relevância das mesmas em diferentes tarefas. Finalmente, o terceiro estágio consiste de um subsistema \"fuzzy\" que integra as informações obtidas dos subsistemas anteriores e fornece um índice geral de saliência, e indica a provável localização do objeto a ser reconhecido. A nova abordagem foi testada com objetos geométricos levando-se em consideração as características que atraem a atenção dos serem humanos
publishDate 2000
dc.date.none.fl_str_mv 2000-06-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14032014-103419/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14032014-103419/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256958946508800