Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Mendes, Patricia Pedrosa Moreira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/85/85131/tde-12072023-091827/
Resumo: Cada vez mais o aprendizado de máquina vem ganhando espaço na área da saúde devido à sua capacidade de melhorar a predição de doenças e auxiliar profissionais na condução dos tratamentos clínicos. A infecção hospitalar é o evento negativo mais comum para pacientes hospitalizados e continua a se constituir em séria ameaça à segurança dos pacientes. O objetivo deste trabalho foi encontrar uma técnica de aprendizado de máquina otimizada e eficiente que possa prever efetivamente a condição da infecção hospitalar, identificando os principais fatores responsáveis por esta condição. Neste trabalho, usamos seis técnicas de aprendizado de máquina, os algoritmos utilizados no trabalho foram Random Forest, Regressão logística, KNN, Adaboost, Bagging e XGBoost; também foram empregadas técnicas modernas de explicabilidade a estes algoritmos. Nesse processo, os dados foram divididos em dados de treino e de teste, os modelos foram treinados em um primeiro momento com os hiperparâmetros padrões, em um segundo momento os modelos foram treinados com hiperparâmetros aprimorados. Os modelos que apresentaram as melhores métricas foram o XGBoost e Random Forest, o XGBoost apresentou o melhor resultado em todas as métricas, exceto na Precisão, o Random Forest obteve o segundo melhor resultado na acurácia e na precisão, na validação cruzada o resultado foi o mesmo que o XGBoost. Para a explicabilidade do modelo foi utilizada a biblioteca SHAP, foi avaliado como o valor de cada variável influenciou no resultado alcançado pelo modelo preditivo XGBoost, SHAP apontou como mais importante as variáveis: NR_DIA_INTERNADO (quantidade de dias de internação), CD_DOENCA_PRINCIPAL_E (CID-10 Classificação internacional de doenças), DS_PROC_PRINCIPAL_E (Procedimento principal durante internação) e QT_DIAS_SONDA_VESICAL (Dias que o paciente ficou com sonda vesical). O estudo mostrou-se viável à adoção de aprendizado de máquina nas rotinas da pesquisa em saúde, no trabalho da comissão de infecção hospitalar e nas iniciativas de inovação nas instituições de saúde no Brasil.
id USP_95db272541f6c9285dc2d521a3b65117
oai_identifier_str oai:teses.usp.br:tde-12072023-091827
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelo preditivo de infecção hospitalar utilizando aprendizado de máquinaPredictive model of nosocomil infection using machine learningaprendizado de máquinaexplainabilityexplicabilidadehospital infectioninfecção hospitalarmachine learningCada vez mais o aprendizado de máquina vem ganhando espaço na área da saúde devido à sua capacidade de melhorar a predição de doenças e auxiliar profissionais na condução dos tratamentos clínicos. A infecção hospitalar é o evento negativo mais comum para pacientes hospitalizados e continua a se constituir em séria ameaça à segurança dos pacientes. O objetivo deste trabalho foi encontrar uma técnica de aprendizado de máquina otimizada e eficiente que possa prever efetivamente a condição da infecção hospitalar, identificando os principais fatores responsáveis por esta condição. Neste trabalho, usamos seis técnicas de aprendizado de máquina, os algoritmos utilizados no trabalho foram Random Forest, Regressão logística, KNN, Adaboost, Bagging e XGBoost; também foram empregadas técnicas modernas de explicabilidade a estes algoritmos. Nesse processo, os dados foram divididos em dados de treino e de teste, os modelos foram treinados em um primeiro momento com os hiperparâmetros padrões, em um segundo momento os modelos foram treinados com hiperparâmetros aprimorados. Os modelos que apresentaram as melhores métricas foram o XGBoost e Random Forest, o XGBoost apresentou o melhor resultado em todas as métricas, exceto na Precisão, o Random Forest obteve o segundo melhor resultado na acurácia e na precisão, na validação cruzada o resultado foi o mesmo que o XGBoost. Para a explicabilidade do modelo foi utilizada a biblioteca SHAP, foi avaliado como o valor de cada variável influenciou no resultado alcançado pelo modelo preditivo XGBoost, SHAP apontou como mais importante as variáveis: NR_DIA_INTERNADO (quantidade de dias de internação), CD_DOENCA_PRINCIPAL_E (CID-10 Classificação internacional de doenças), DS_PROC_PRINCIPAL_E (Procedimento principal durante internação) e QT_DIAS_SONDA_VESICAL (Dias que o paciente ficou com sonda vesical). O estudo mostrou-se viável à adoção de aprendizado de máquina nas rotinas da pesquisa em saúde, no trabalho da comissão de infecção hospitalar e nas iniciativas de inovação nas instituições de saúde no Brasil.Machine learning is increasingly gaining ground in the health area due to its ability to improve disease prediction and assist professionals in conducting clinical treatments. Hospital infection is the most common negative event for hospitalized patients and continues to pose a serious threat to patient safety. The objective of this work was to find an optimized and efficient machine learning technique that can effectively predict the condition of nosocomial infection, identifying the main factors responsible for this condition. In this work, we used six machine learning techniques, the algorithms used in the work were Random Forest, Logistic Regression, KNN, Adaboost, Bagging and XGBoost; modern explainability techniques were also used for these algorithms. In this process, the data were divided into training and test data, the models were trained in a first moment with standard hyperparameters, in a second moment the models were trained with improved hyperparameters. The models that presented the best metrics were XGBoost and Random Forest, XGBoost presented the best result in all metrics, except for Precision, Random Forest obtained the second best result in accuracy and precision, in cross-validation the result was the same as XGBoost. For the explanation of the model, the SHAP library was used, it was evaluated how the value of each variable influenced the result achieved by the predictive model XGBoost, SHAP pointed out as the most important variables: NR_DIA_INTERNADO (number of days of hospitalization), CD_DOENCA_PRINCIPAL_E (ICD-10 International classification of diseases), DS_PROC_PRINCIPAL_E (Main procedure during hospitalization) and QT_DIAS_SONDA_VESICAL (Days that the patient had a urinary catheter). The study proved to be feasible for the adoption of machine learning in health research routines, in the work of the hospital infection committee and in innovation initiatives in health institutions in Brazil.Biblioteca Digitais de Teses e Dissertações da USPMenezes, Mário Olímpio deMendes, Patricia Pedrosa Moreira2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/85/85131/tde-12072023-091827/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-07-12T19:40:14Zoai:teses.usp.br:tde-12072023-091827Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-07-12T19:40:14Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
Predictive model of nosocomil infection using machine learning
title Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
spellingShingle Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
Mendes, Patricia Pedrosa Moreira
aprendizado de máquina
explainability
explicabilidade
hospital infection
infecção hospitalar
machine learning
title_short Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
title_full Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
title_fullStr Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
title_full_unstemmed Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
title_sort Modelo preditivo de infecção hospitalar utilizando aprendizado de máquina
author Mendes, Patricia Pedrosa Moreira
author_facet Mendes, Patricia Pedrosa Moreira
author_role author
dc.contributor.none.fl_str_mv Menezes, Mário Olímpio de
dc.contributor.author.fl_str_mv Mendes, Patricia Pedrosa Moreira
dc.subject.por.fl_str_mv aprendizado de máquina
explainability
explicabilidade
hospital infection
infecção hospitalar
machine learning
topic aprendizado de máquina
explainability
explicabilidade
hospital infection
infecção hospitalar
machine learning
description Cada vez mais o aprendizado de máquina vem ganhando espaço na área da saúde devido à sua capacidade de melhorar a predição de doenças e auxiliar profissionais na condução dos tratamentos clínicos. A infecção hospitalar é o evento negativo mais comum para pacientes hospitalizados e continua a se constituir em séria ameaça à segurança dos pacientes. O objetivo deste trabalho foi encontrar uma técnica de aprendizado de máquina otimizada e eficiente que possa prever efetivamente a condição da infecção hospitalar, identificando os principais fatores responsáveis por esta condição. Neste trabalho, usamos seis técnicas de aprendizado de máquina, os algoritmos utilizados no trabalho foram Random Forest, Regressão logística, KNN, Adaboost, Bagging e XGBoost; também foram empregadas técnicas modernas de explicabilidade a estes algoritmos. Nesse processo, os dados foram divididos em dados de treino e de teste, os modelos foram treinados em um primeiro momento com os hiperparâmetros padrões, em um segundo momento os modelos foram treinados com hiperparâmetros aprimorados. Os modelos que apresentaram as melhores métricas foram o XGBoost e Random Forest, o XGBoost apresentou o melhor resultado em todas as métricas, exceto na Precisão, o Random Forest obteve o segundo melhor resultado na acurácia e na precisão, na validação cruzada o resultado foi o mesmo que o XGBoost. Para a explicabilidade do modelo foi utilizada a biblioteca SHAP, foi avaliado como o valor de cada variável influenciou no resultado alcançado pelo modelo preditivo XGBoost, SHAP apontou como mais importante as variáveis: NR_DIA_INTERNADO (quantidade de dias de internação), CD_DOENCA_PRINCIPAL_E (CID-10 Classificação internacional de doenças), DS_PROC_PRINCIPAL_E (Procedimento principal durante internação) e QT_DIAS_SONDA_VESICAL (Dias que o paciente ficou com sonda vesical). O estudo mostrou-se viável à adoção de aprendizado de máquina nas rotinas da pesquisa em saúde, no trabalho da comissão de infecção hospitalar e nas iniciativas de inovação nas instituições de saúde no Brasil.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/85/85131/tde-12072023-091827/
url https://www.teses.usp.br/teses/disponiveis/85/85131/tde-12072023-091827/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256900070014976