Aspectos da correspondência AdS/CFT

Detalhes bibliográficos
Autor(a) principal: Minces, Pablo Sebastián
Data de Publicação: 2001
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04122013-133715/
Resumo: Fazemos uma análise das teorias de campos escalar e vetorial na correspondência AdS/CFT. Começamos apresentando as propriedades básicas das teorias conformes e dos espaços AdS. Então, estudamos em detalhe os problemas da estabilidade e quantização do campo escalar acoplado com espaços assintóticamente AdS, seguindo o trabalho de Breitenlohner e Freedman [1]. Mostramos que existem dois tipos de modos normalizáveis: os \"regulares\" e os \"irregulares\" . No caso dos modos \'\'\'regulares\'\', a energia é positiva e finita para qualquer valor do coeficiente de acoplamento do campo com o fundo e para massa do campo satisfazendo o vínculo m POT.2 > -d POT.2/4, onde d + 1 é a dimensão do espaço-tempo. No caso dos modos \"irregulares\", a energia é positiva e finita para -d POT.2/4 < m POT.2 < 1 -d POT.2/4 e para valores particulares do coeficiente de acoplamento do campo com o fundo. A seguir estudamos o problema de reproduzir esses resultados na correspondência AdS / CFT. Trabalhamos com ações estacionárias perante condições de contorno de Dirichlet, Neumann e mistas, onde as últimas fixam na borda do espaço AdS o valor de combinações lineares do campo e sua derivada normal. Mostramos que os resultados são consistentes com a condição de unitariedade do campo escalar, que o formalismo fixa a normalização das ações na borda, e que são reproduzidas as teorias conformes correspondentes às condições \"regulares\" e \"irregulares\". Finalmente, consideramos teorias de campo vetorial em três dimensões e contendo um termo de Chern-Simons. Encontramos as funções de dois pontos na borda correspondentes às teorias de Proca-Chern-Simons e Maxwell-Chern-Simons. No caso do modelo Auto-Dual, adicionamos um termo de superfície que faz com que a ação seja estacionária, e que fornece funções de dois pontos na borda que são consistentes com a equivalência do modelo Auto-Dual com a teoria de Maxwell-Chern-Simons.
id USP_9622493852d0a7aa4ffaef273803045e
oai_identifier_str oai:teses.usp.br:tde-04122013-133715
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Aspectos da correspondência AdS/CFTAspectos da correspondência AdS/CFTTeoria de camposTheory of fieldsFazemos uma análise das teorias de campos escalar e vetorial na correspondência AdS/CFT. Começamos apresentando as propriedades básicas das teorias conformes e dos espaços AdS. Então, estudamos em detalhe os problemas da estabilidade e quantização do campo escalar acoplado com espaços assintóticamente AdS, seguindo o trabalho de Breitenlohner e Freedman [1]. Mostramos que existem dois tipos de modos normalizáveis: os \"regulares\" e os \"irregulares\" . No caso dos modos \'\'\'regulares\'\', a energia é positiva e finita para qualquer valor do coeficiente de acoplamento do campo com o fundo e para massa do campo satisfazendo o vínculo m POT.2 > -d POT.2/4, onde d + 1 é a dimensão do espaço-tempo. No caso dos modos \"irregulares\", a energia é positiva e finita para -d POT.2/4 < m POT.2 < 1 -d POT.2/4 e para valores particulares do coeficiente de acoplamento do campo com o fundo. A seguir estudamos o problema de reproduzir esses resultados na correspondência AdS / CFT. Trabalhamos com ações estacionárias perante condições de contorno de Dirichlet, Neumann e mistas, onde as últimas fixam na borda do espaço AdS o valor de combinações lineares do campo e sua derivada normal. Mostramos que os resultados são consistentes com a condição de unitariedade do campo escalar, que o formalismo fixa a normalização das ações na borda, e que são reproduzidas as teorias conformes correspondentes às condições \"regulares\" e \"irregulares\". Finalmente, consideramos teorias de campo vetorial em três dimensões e contendo um termo de Chern-Simons. Encontramos as funções de dois pontos na borda correspondentes às teorias de Proca-Chern-Simons e Maxwell-Chern-Simons. No caso do modelo Auto-Dual, adicionamos um termo de superfície que faz com que a ação seja estacionária, e que fornece funções de dois pontos na borda que são consistentes com a equivalência do modelo Auto-Dual com a teoria de Maxwell-Chern-Simons.We consider scalar and vector field theories in the AdS/CFT correspondence. We begin by describing conformai field theories and AdS spaces. Then, we follow the work by Breitenlohner and Freedman [1] and study in detail the problems of stability and quantization of a: scalar field coupled to an asymptotically AdS space. We show that there exist two different kinds of normalizable modes, namely the regular and the irregular ones. In the case of the regular modes the energy is positive and finite for any value of the coupling coefficient between the field and the background and for m2 > -d2/4 where m is the mass of the scalar field and d + 1 is the dimension of the space-time. In the case of the \'irregular\' modes the energy is positive and finite for - d2/4 < m2 < 1- d2/4 and for particular values ofthe coupling coefficient between the field and the background. Then, we consider the problem of reproduzing these results in the AdS/CFT correspondence context. We analize actions which are stationary under Dirichlet, Neumann and mixed boundary conditions on the field where the mixed boundary conditions are a combination of the Dirichlet and Neumann ones. We show that our results are consistent with the unitarity bound for the scalar field, that the formalism fixes the normalization of the actions at the bounelary anel that we reproduce the conformal field theories corresponding to the regular and irregular conditions. Finally, we consider vector field theories in three dimensional AdS spaces and including a Chern-Simons term. We find the boundary two-point functions corresponding to the Proca-Chern-Simons and Maxwell-Chern-Simons theories. In the case of the Self-Dual model we add a surface term which makes the action stationary and which gives rise to boundary two-point functions which are consistent with the equivalence between the Self-Dual model and the Maxwell-Chern-Simons theory.Biblioteca Digitais de Teses e Dissertações da USPRivelles, Victor de OliveiraMinces, Pablo Sebastián2001-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-04122013-133715/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-04122013-133715Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aspectos da correspondência AdS/CFT
Aspectos da correspondência AdS/CFT
title Aspectos da correspondência AdS/CFT
spellingShingle Aspectos da correspondência AdS/CFT
Minces, Pablo Sebastián
Teoria de campos
Theory of fields
title_short Aspectos da correspondência AdS/CFT
title_full Aspectos da correspondência AdS/CFT
title_fullStr Aspectos da correspondência AdS/CFT
title_full_unstemmed Aspectos da correspondência AdS/CFT
title_sort Aspectos da correspondência AdS/CFT
author Minces, Pablo Sebastián
author_facet Minces, Pablo Sebastián
author_role author
dc.contributor.none.fl_str_mv Rivelles, Victor de Oliveira
dc.contributor.author.fl_str_mv Minces, Pablo Sebastián
dc.subject.por.fl_str_mv Teoria de campos
Theory of fields
topic Teoria de campos
Theory of fields
description Fazemos uma análise das teorias de campos escalar e vetorial na correspondência AdS/CFT. Começamos apresentando as propriedades básicas das teorias conformes e dos espaços AdS. Então, estudamos em detalhe os problemas da estabilidade e quantização do campo escalar acoplado com espaços assintóticamente AdS, seguindo o trabalho de Breitenlohner e Freedman [1]. Mostramos que existem dois tipos de modos normalizáveis: os \"regulares\" e os \"irregulares\" . No caso dos modos \'\'\'regulares\'\', a energia é positiva e finita para qualquer valor do coeficiente de acoplamento do campo com o fundo e para massa do campo satisfazendo o vínculo m POT.2 > -d POT.2/4, onde d + 1 é a dimensão do espaço-tempo. No caso dos modos \"irregulares\", a energia é positiva e finita para -d POT.2/4 < m POT.2 < 1 -d POT.2/4 e para valores particulares do coeficiente de acoplamento do campo com o fundo. A seguir estudamos o problema de reproduzir esses resultados na correspondência AdS / CFT. Trabalhamos com ações estacionárias perante condições de contorno de Dirichlet, Neumann e mistas, onde as últimas fixam na borda do espaço AdS o valor de combinações lineares do campo e sua derivada normal. Mostramos que os resultados são consistentes com a condição de unitariedade do campo escalar, que o formalismo fixa a normalização das ações na borda, e que são reproduzidas as teorias conformes correspondentes às condições \"regulares\" e \"irregulares\". Finalmente, consideramos teorias de campo vetorial em três dimensões e contendo um termo de Chern-Simons. Encontramos as funções de dois pontos na borda correspondentes às teorias de Proca-Chern-Simons e Maxwell-Chern-Simons. No caso do modelo Auto-Dual, adicionamos um termo de superfície que faz com que a ação seja estacionária, e que fornece funções de dois pontos na borda que são consistentes com a equivalência do modelo Auto-Dual com a teoria de Maxwell-Chern-Simons.
publishDate 2001
dc.date.none.fl_str_mv 2001-07-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04122013-133715/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04122013-133715/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256677869420544