Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/ |
Resumo: | Field data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case. |
id |
USP_97a7a28a4c4f8537c9375bdfe2aedf6b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28022018-180550 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nurseryImagens aéreas multiespectrais para fenotipagem e contagem de plantas: estudos de caso em ervilha (Pisum sativum) e viveiro de maçã (Malus domestica)FenotipagemHigh-throuhput PhenotypingÍndice de vegetaçãoInventárioInventoryRemote sensingSensoriamento remotoVegetation indexField data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case.A coleta de dados de campo envolve processos de grande consumo em tempo e dinheiro, ademais de levar o risco de possíveis erros de medição. Com o avanço tecnológico nos últimos anos, surgiram ferramentas de sensoriamento remoto de baixo custo para facilitar procedimentos de medição em campo, sendo uma das técnicas mais conhecidas o uso de câmeras multiespectrales acopladas a um ARP. Essas ferramentas são complementadas pela implementação de procedimentos em programas SIG e de processamento de imagens, a partir dos quais são desenvolvidas metodologias que visam extrair valores alvo desde um determinado conjunto original de dados. Neste trabalho, foram utilizadas imagens multiespectrais no desenvolvimento de dois estudos de caso: (1) para estimativa de produtividade em parcelas para pesquisa de ervilha, e (2) para contagem de plantas em um viveiro de maçã plantado diretamente no solo; ambos os campos localizados no estado de Washington, EUA. No primeiro caso, foi criada uma metodologia confiável e replicável para estimativa de produtividade como técnica de fenotipagem de alto rendimento; enquanto no segundo caso, foi desenvolvido um algoritmo capaz de identificar o número de plantas de maçã com mais de 95% de exatidão. Em ambos os estudos, o sensoriamento remoto é usado como uma ferramenta eficiente e prática na melhora de operações de campo.Biblioteca Digitais de Teses e Dissertações da USPRomanelli, Thiago LiborioQuiros Vargas, Juan Jose 2017-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-09-20T16:26:02Zoai:teses.usp.br:tde-28022018-180550Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T16:26:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery Imagens aéreas multiespectrais para fenotipagem e contagem de plantas: estudos de caso em ervilha (Pisum sativum) e viveiro de maçã (Malus domestica) |
title |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
spellingShingle |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery Quiros Vargas, Juan Jose Fenotipagem High-throuhput Phenotyping Índice de vegetação Inventário Inventory Remote sensing Sensoriamento remoto Vegetation index |
title_short |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
title_full |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
title_fullStr |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
title_full_unstemmed |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
title_sort |
Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery |
author |
Quiros Vargas, Juan Jose |
author_facet |
Quiros Vargas, Juan Jose |
author_role |
author |
dc.contributor.none.fl_str_mv |
Romanelli, Thiago Liborio |
dc.contributor.author.fl_str_mv |
Quiros Vargas, Juan Jose |
dc.subject.por.fl_str_mv |
Fenotipagem High-throuhput Phenotyping Índice de vegetação Inventário Inventory Remote sensing Sensoriamento remoto Vegetation index |
topic |
Fenotipagem High-throuhput Phenotyping Índice de vegetação Inventário Inventory Remote sensing Sensoriamento remoto Vegetation index |
description |
Field data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257426136399872 |