Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery

Detalhes bibliográficos
Autor(a) principal: Quiros Vargas, Juan Jose
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/
Resumo: Field data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case.
id USP_97a7a28a4c4f8537c9375bdfe2aedf6b
oai_identifier_str oai:teses.usp.br:tde-28022018-180550
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nurseryImagens aéreas multiespectrais para fenotipagem e contagem de plantas: estudos de caso em ervilha (Pisum sativum) e viveiro de maçã (Malus domestica)FenotipagemHigh-throuhput PhenotypingÍndice de vegetaçãoInventárioInventoryRemote sensingSensoriamento remotoVegetation indexField data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case.A coleta de dados de campo envolve processos de grande consumo em tempo e dinheiro, ademais de levar o risco de possíveis erros de medição. Com o avanço tecnológico nos últimos anos, surgiram ferramentas de sensoriamento remoto de baixo custo para facilitar procedimentos de medição em campo, sendo uma das técnicas mais conhecidas o uso de câmeras multiespectrales acopladas a um ARP. Essas ferramentas são complementadas pela implementação de procedimentos em programas SIG e de processamento de imagens, a partir dos quais são desenvolvidas metodologias que visam extrair valores alvo desde um determinado conjunto original de dados. Neste trabalho, foram utilizadas imagens multiespectrais no desenvolvimento de dois estudos de caso: (1) para estimativa de produtividade em parcelas para pesquisa de ervilha, e (2) para contagem de plantas em um viveiro de maçã plantado diretamente no solo; ambos os campos localizados no estado de Washington, EUA. No primeiro caso, foi criada uma metodologia confiável e replicável para estimativa de produtividade como técnica de fenotipagem de alto rendimento; enquanto no segundo caso, foi desenvolvido um algoritmo capaz de identificar o número de plantas de maçã com mais de 95% de exatidão. Em ambos os estudos, o sensoriamento remoto é usado como uma ferramenta eficiente e prática na melhora de operações de campo.Biblioteca Digitais de Teses e Dissertações da USPRomanelli, Thiago LiborioQuiros Vargas, Juan Jose 2017-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-09-20T16:26:02Zoai:teses.usp.br:tde-28022018-180550Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T16:26:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
Imagens aéreas multiespectrais para fenotipagem e contagem de plantas: estudos de caso em ervilha (Pisum sativum) e viveiro de maçã (Malus domestica)
title Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
spellingShingle Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
Quiros Vargas, Juan Jose
Fenotipagem
High-throuhput Phenotyping
Índice de vegetação
Inventário
Inventory
Remote sensing
Sensoriamento remoto
Vegetation index
title_short Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
title_full Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
title_fullStr Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
title_full_unstemmed Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
title_sort Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery
author Quiros Vargas, Juan Jose
author_facet Quiros Vargas, Juan Jose
author_role author
dc.contributor.none.fl_str_mv Romanelli, Thiago Liborio
dc.contributor.author.fl_str_mv Quiros Vargas, Juan Jose
dc.subject.por.fl_str_mv Fenotipagem
High-throuhput Phenotyping
Índice de vegetação
Inventário
Inventory
Remote sensing
Sensoriamento remoto
Vegetation index
topic Fenotipagem
High-throuhput Phenotyping
Índice de vegetação
Inventário
Inventory
Remote sensing
Sensoriamento remoto
Vegetation index
description Field data collection involves time and money consuming processes, additionally carrying possible measurement errors. With the technological advance in the last years, low cost remote sensing tools have emerged to facilitate procedures for in-field measurements, being one of the most known techniques the use of multispectral cameras coupled to RPA. These tools are complemented by the implementation of procedures in GIS and image-processing software, from which are developed methodologies leading to extract target values from a certain original set of data. In this work, multispectral images were used in two case studies: (1) for yield estimation in pea plots for breeding research, and (2) for plant counting in an apple nursery planted directly on the soil; both fields are located in Washington State, USA. In the first case, a reliable and replicable methodology for yield estimation was created as a high throughput phenotyping technique; while in the second case an algorithm capable of identifying the number of apple plants with more than 95% accuracy was developed. In both studies, remote sensing is used as an efficient and practical way to improve field operations under the specified conditions of each case.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257426136399872