A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/ |
Resumo: | The main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations. |
id |
USP_990ba30f37ae30ac558ea13ab2373c11 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10042023-155349 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structureUma abordagem Bayesiana para dados censurados à esquerda baseada em modelos de mistura e semi-contínuos usando a estrutura TobitAnálise BayesianaAnálise de dadosDados com censuras à esquerdaDistribuição de WeibullMétodos MCMCModelo de TobitThe main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations.O principal objetivo desta tese é introduzir uma análise de dados censurada à esquerda usando o modelo tobit para dados univariados e multivariados. O modelo tobit pode ser usado como uma alternativa ao modelo de regressão de mínimos quadrados quando a suposição de linearidade não é satisfeita. O modelo proposto é capaz de se ajustar adequadamente aos dados, formulando um modelo de regressão para o qual a resposta é préfixada a um valor limite. Nesta tese, apresentamos cinco capítulos, cada um considerando um manuscrito submetido para publicação e com diferentes abordagens e aplicações. A estimativa dos parâmetros do modelo é feita usando métodos de inferência Bayesianos. Os resumos a posteriori de interesse são obtidos usando os métodos de simulação existentes MCMC (Monte Carlo on Markov Chains), como Gibs e Metropolis-Hasting. No primeiro trabalho (Capítulo 2) apresentamos o modelo de mistura tobit-Weibull para analisar os dados ambientais. O conjunto de dados considerado está relacionado às concentrações de nitrogênio amônia em rios. No segundo trabalho (Capítulo 3), é apresentado o modelo tobit-Weibull bivariado sob uma análise Bayesiana hierárquica considerando um conjunto de dados em astronomia estelar onde uma variável de fragilidade ou latente é considerada para capturar a possível correlação entre as respostas bivariadas para a mesma unidade amostral. Aplicações do modelo univariado e bivariado tobit-Weibull também são apresentadas no Capítulo 4, considerando dois conjuntos de dados médicos (dados de sobrevivência ao câncer e dados de vacinas). O modelo tobit-Weibull na presença de alguns covariáveis com efeitos lineares e quadráticos é apresentado no Capítulo 5, considerando um conjunto de dados referentes à precipitação total diária coletada em uma estação meteorológica localizada na cidade de São Paulo, Brasil. No Capítulo 6 apresentamos uma forma generalizada do modelo tobit-Weibull na presença de covariáveis e excesso de zeros; a aplicação foi realizada utilizando dados referentes à precipitação total diária. O Capítulo 7 conclui esta tese com conclusões gerais mostrando a utilidade do modelo proposto para análise de dados censurados à esquerda ou com um excesso de observações com valor nulo.Biblioteca Digitais de Teses e Dissertações da USPAchcar, Jorge AlbertoPeralta, Danielle2022-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-05T11:09:02Zoai:teses.usp.br:tde-10042023-155349Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-05T11:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure Uma abordagem Bayesiana para dados censurados à esquerda baseada em modelos de mistura e semi-contínuos usando a estrutura Tobit |
title |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
spellingShingle |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure Peralta, Danielle Análise Bayesiana Análise de dados Dados com censuras à esquerda Distribuição de Weibull Métodos MCMC Modelo de Tobit |
title_short |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
title_full |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
title_fullStr |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
title_full_unstemmed |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
title_sort |
A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure |
author |
Peralta, Danielle |
author_facet |
Peralta, Danielle |
author_role |
author |
dc.contributor.none.fl_str_mv |
Achcar, Jorge Alberto |
dc.contributor.author.fl_str_mv |
Peralta, Danielle |
dc.subject.por.fl_str_mv |
Análise Bayesiana Análise de dados Dados com censuras à esquerda Distribuição de Weibull Métodos MCMC Modelo de Tobit |
topic |
Análise Bayesiana Análise de dados Dados com censuras à esquerda Distribuição de Weibull Métodos MCMC Modelo de Tobit |
description |
The main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/ |
url |
https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256908500566016 |