A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure

Detalhes bibliográficos
Autor(a) principal: Peralta, Danielle
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/
Resumo: The main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations.
id USP_990ba30f37ae30ac558ea13ab2373c11
oai_identifier_str oai:teses.usp.br:tde-10042023-155349
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structureUma abordagem Bayesiana para dados censurados à esquerda baseada em modelos de mistura e semi-contínuos usando a estrutura TobitAnálise BayesianaAnálise de dadosDados com censuras à esquerdaDistribuição de WeibullMétodos MCMCModelo de TobitThe main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations.O principal objetivo desta tese é introduzir uma análise de dados censurada à esquerda usando o modelo tobit para dados univariados e multivariados. O modelo tobit pode ser usado como uma alternativa ao modelo de regressão de mínimos quadrados quando a suposição de linearidade não é satisfeita. O modelo proposto é capaz de se ajustar adequadamente aos dados, formulando um modelo de regressão para o qual a resposta é préfixada a um valor limite. Nesta tese, apresentamos cinco capítulos, cada um considerando um manuscrito submetido para publicação e com diferentes abordagens e aplicações. A estimativa dos parâmetros do modelo é feita usando métodos de inferência Bayesianos. Os resumos a posteriori de interesse são obtidos usando os métodos de simulação existentes MCMC (Monte Carlo on Markov Chains), como Gibs e Metropolis-Hasting. No primeiro trabalho (Capítulo 2) apresentamos o modelo de mistura tobit-Weibull para analisar os dados ambientais. O conjunto de dados considerado está relacionado às concentrações de nitrogênio amônia em rios. No segundo trabalho (Capítulo 3), é apresentado o modelo tobit-Weibull bivariado sob uma análise Bayesiana hierárquica considerando um conjunto de dados em astronomia estelar onde uma variável de fragilidade ou latente é considerada para capturar a possível correlação entre as respostas bivariadas para a mesma unidade amostral. Aplicações do modelo univariado e bivariado tobit-Weibull também são apresentadas no Capítulo 4, considerando dois conjuntos de dados médicos (dados de sobrevivência ao câncer e dados de vacinas). O modelo tobit-Weibull na presença de alguns covariáveis com efeitos lineares e quadráticos é apresentado no Capítulo 5, considerando um conjunto de dados referentes à precipitação total diária coletada em uma estação meteorológica localizada na cidade de São Paulo, Brasil. No Capítulo 6 apresentamos uma forma generalizada do modelo tobit-Weibull na presença de covariáveis e excesso de zeros; a aplicação foi realizada utilizando dados referentes à precipitação total diária. O Capítulo 7 conclui esta tese com conclusões gerais mostrando a utilidade do modelo proposto para análise de dados censurados à esquerda ou com um excesso de observações com valor nulo.Biblioteca Digitais de Teses e Dissertações da USPAchcar, Jorge AlbertoPeralta, Danielle2022-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-05T11:09:02Zoai:teses.usp.br:tde-10042023-155349Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-05T11:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
Uma abordagem Bayesiana para dados censurados à esquerda baseada em modelos de mistura e semi-contínuos usando a estrutura Tobit
title A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
spellingShingle A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
Peralta, Danielle
Análise Bayesiana
Análise de dados
Dados com censuras à esquerda
Distribuição de Weibull
Métodos MCMC
Modelo de Tobit
title_short A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
title_full A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
title_fullStr A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
title_full_unstemmed A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
title_sort A Bayesian approach for left-censored data based on mixture and semi-continuous models using Tobit structure
author Peralta, Danielle
author_facet Peralta, Danielle
author_role author
dc.contributor.none.fl_str_mv Achcar, Jorge Alberto
dc.contributor.author.fl_str_mv Peralta, Danielle
dc.subject.por.fl_str_mv Análise Bayesiana
Análise de dados
Dados com censuras à esquerda
Distribuição de Weibull
Métodos MCMC
Modelo de Tobit
topic Análise Bayesiana
Análise de dados
Dados com censuras à esquerda
Distribuição de Weibull
Métodos MCMC
Modelo de Tobit
description The main objective of this thesis is to introduce a left-censored data analysis using the tobit model for univariate and multivariate data. The tobit model can be used as an alternative to the least squares regression model when the assumption of linearity is not satisfied. The tobit model is able to fit the data adequately by formulating a regression model for which the response is pre-fixed to a limit value. In this thesis we present five chapters, each considering a manuscript submitted for publication and with different approaches and applications. The estimation of the model parameters is performed using Bayesian inference methods. The summaries a posteriori of interest are obtained using existing MCMC (Monte Carlo on Markov Chains) simulation methods, as Gibs and Metropolis-Hasting. In the first paper (Chapter 2) we present the tobit-Weibull mixture model to analyze environmental data under the left censoring scheme. The considered dataset is related to ammonia nitrogen concentrations in rivers. In the second paper (Chapter 3), the bivariate tobit-Weibull model under a hierarchical Bayesian analysis is presented considering a dataset in stellar astronomy where a fragility or latent variable is considered to capture the possible correlation between the bivariate responses for the same sample unit; applications of the univariate and bivariate tobit-Weibull model are also presented in Chapter 4, considering two medical datasets (cancer survival data and vaccine data). The tobit-Weibull model in the presence of some covariates with linear and quadratic effects, under the left censoring scheme, is presented in Chapter 5 considering a dataset concerning total daily precipitation collected at a weather station located in the city of São Paulo, Brazil. In Chapter 6 we present a generalized form of the tobit-Weibull model in the presence of covariates and excess zeros; the application was performed using data concerning total daily precipitation. Chapter 7 concludes this thesis with general conclusions showing the usefulness of the proposed model fot analyzing left-censored data or with an excess of zero-valued observations.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/
url https://www.teses.usp.br/teses/disponiveis/17/17139/tde-10042023-155349/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256908500566016