Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11134/tde-10112021-114539/ |
Resumo: | Soybean production in Brazil plays a key role in supplying the domestic and foreign markets. Brazil ranks first in world soybean production, driven mainly by the state of Mato Grosso, which leads the soybean production complex in the country. In this context, data of soybean grain production in thousand tons, value of soybean grain production in thousand reais and the value of soybean derivatives in thousand reais for that state, in the period from 1990 to 2018, were collected from the Brazilian Institute of Geography and Statistics (IBGE). Then, univariate imputation techniques via cubic spline interpolation were applied to missing data from 46 municipalities in the state, for the three variables, in order to complete this data set, and reveal estimates for the same variables. Finally, there were applications of cluster analysis, for the complete data of the 141 municipalities in the state from 1990 to 2018, on the same variables. From the 5, 5 and 4 staggered groups created and statistically validated for the variables of soybean production in thousand tons, soybean production value in thousand reais and value of soybean production derivatives in thousand reais, a zoning of soybean production activity was generated out in the state of Mato Grosso during this period, and this productive overview of the crop can be a contribution to the state in developing public policies in this segment as well as an attraction of investors in the state interested in this culture. |
id |
USP_992b0778b858a0c64f0aa828e98ed254 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10112021-114539 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018Análise dos dados da safra de soja no estado de Mato Grosso, Brasil, no período de 1990 a 2018Análise de aglomeradosCluster analysisImputação univariada múltiplaMultiple univariate imputationProduçãoProductionSoybean production in Brazil plays a key role in supplying the domestic and foreign markets. Brazil ranks first in world soybean production, driven mainly by the state of Mato Grosso, which leads the soybean production complex in the country. In this context, data of soybean grain production in thousand tons, value of soybean grain production in thousand reais and the value of soybean derivatives in thousand reais for that state, in the period from 1990 to 2018, were collected from the Brazilian Institute of Geography and Statistics (IBGE). Then, univariate imputation techniques via cubic spline interpolation were applied to missing data from 46 municipalities in the state, for the three variables, in order to complete this data set, and reveal estimates for the same variables. Finally, there were applications of cluster analysis, for the complete data of the 141 municipalities in the state from 1990 to 2018, on the same variables. From the 5, 5 and 4 staggered groups created and statistically validated for the variables of soybean production in thousand tons, soybean production value in thousand reais and value of soybean production derivatives in thousand reais, a zoning of soybean production activity was generated out in the state of Mato Grosso during this period, and this productive overview of the crop can be a contribution to the state in developing public policies in this segment as well as an attraction of investors in the state interested in this culture.A produção de soja do Brasil possui um papel importante para o abastecimento dos mercados interno e externo. O Brasil ocupa o primeiro lugar na produção mundial de soja, impulsionado principalmente pelo estado de Mato Grosso, que lidera o complexo produtivo da soja no país. Neste contexto, foram coletados juntamente ao Instituto Brasileiro de Geografia e Estatística (IBGE) os dados de produção de soja em grãos em mil toneladas, valor de produção de soja em grãos em mil reais e o valor de derivados de produção de soja em grãos em mil reais no período de 1990 a 2018, desse estado. Em seguida foram aplicados aos mesmos dados técnicas de imputação univariada via interpolação por splines cúbicas em dados faltantes de 46 municípios do estado, para as três variáveis, com a finalidade de completar este conjunto de dados, e revelar estimativas das mesmas variáveis. E por final ocorreram as aplicações de análises de agrupamentos (clusters), para os dados completos dos 141 municípios do estado durante 1990 a 2018, nas mesmas variáveis. E a partir dos 5, 5 e 4 grupos escalonados criados e validados estatisticamente para as variáveis de produção de soja em grão em mil toneladas, valor de produção de soja em grãos em mil reais e valor de derivados de produção de soja em grãos em mil reais, foi realizado um zoneamento da atividade da produtiva da soja no estado de Mato Grosso durante esse período, e este retrato produtivo da cultura pode ser uma contribuição para o estado na realização de políticas públicas desse segmento bem como um atrativo de investidores no estado interessados nesta cultura.Biblioteca Digitais de Teses e Dissertações da USPPiedade, Sonia Maria de StefanoRibeiro, João Gabriel2021-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11134/tde-10112021-114539/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-03T12:58:17Zoai:teses.usp.br:tde-10112021-114539Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-03T12:58:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 Análise dos dados da safra de soja no estado de Mato Grosso, Brasil, no período de 1990 a 2018 |
title |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
spellingShingle |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 Ribeiro, João Gabriel Análise de aglomerados Cluster analysis Imputação univariada múltipla Multiple univariate imputation Produção Production |
title_short |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
title_full |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
title_fullStr |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
title_full_unstemmed |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
title_sort |
Analysis of soybean crop data in the state of Mato Grosso, Brazil, in the period from 1990 to 2018 |
author |
Ribeiro, João Gabriel |
author_facet |
Ribeiro, João Gabriel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Piedade, Sonia Maria de Stefano |
dc.contributor.author.fl_str_mv |
Ribeiro, João Gabriel |
dc.subject.por.fl_str_mv |
Análise de aglomerados Cluster analysis Imputação univariada múltipla Multiple univariate imputation Produção Production |
topic |
Análise de aglomerados Cluster analysis Imputação univariada múltipla Multiple univariate imputation Produção Production |
description |
Soybean production in Brazil plays a key role in supplying the domestic and foreign markets. Brazil ranks first in world soybean production, driven mainly by the state of Mato Grosso, which leads the soybean production complex in the country. In this context, data of soybean grain production in thousand tons, value of soybean grain production in thousand reais and the value of soybean derivatives in thousand reais for that state, in the period from 1990 to 2018, were collected from the Brazilian Institute of Geography and Statistics (IBGE). Then, univariate imputation techniques via cubic spline interpolation were applied to missing data from 46 municipalities in the state, for the three variables, in order to complete this data set, and reveal estimates for the same variables. Finally, there were applications of cluster analysis, for the complete data of the 141 municipalities in the state from 1990 to 2018, on the same variables. From the 5, 5 and 4 staggered groups created and statistically validated for the variables of soybean production in thousand tons, soybean production value in thousand reais and value of soybean production derivatives in thousand reais, a zoning of soybean production activity was generated out in the state of Mato Grosso during this period, and this productive overview of the crop can be a contribution to the state in developing public policies in this segment as well as an attraction of investors in the state interested in this culture. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-10112021-114539/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-10112021-114539/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256553378283520 |