Noncommutative Lp-Spaces and Perturbations of KMS States

Detalhes bibliográficos
Autor(a) principal: Silva, Ricardo Correa da
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21082018-225801/
Resumo: We extend the theory of perturbations of KMS states to some class of unbounded perturbations using noncommutative Lp-spaces. We also prove certain stability of the domain of the Modular Operator associated to a ||.||p-continuous state. This allows us to define an analytic multiple-time KMS condition and to obtain its analyticity together with some bounds to its norm. The main results are Theorem 5.1.15, Theorem 5.1.16 and Corollary 5.1.18. Apart from that, this work contains a detailed review, with minor contributions due to the author, starting with the description of C*-algebras and von Neumann algebras followed by weights and representations, a whole chapter is devoted to the study of KMS states and its physical interpretation as the states of thermal equilibrium, then the Tomita-Takesaki Modular Theory is presented, furthermore, we study analytical properties of the modular operator automorphism group, positive cones and bounded perturbations of states, and finally we start presenting multiple versions of noncommutative Lp-spaces.
id USP_99c4491aa3b066b5365868cdbc8797f1
oai_identifier_str oai:teses.usp.br:tde-21082018-225801
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Noncommutative Lp-Spaces and Perturbations of KMS StatesEspaços Lp Não-Comutativos e Perturbações de Estados KMSespaços Lp não-comutativosestados KMSperturbações ilimitadasWe extend the theory of perturbations of KMS states to some class of unbounded perturbations using noncommutative Lp-spaces. We also prove certain stability of the domain of the Modular Operator associated to a ||.||p-continuous state. This allows us to define an analytic multiple-time KMS condition and to obtain its analyticity together with some bounds to its norm. The main results are Theorem 5.1.15, Theorem 5.1.16 and Corollary 5.1.18. Apart from that, this work contains a detailed review, with minor contributions due to the author, starting with the description of C*-algebras and von Neumann algebras followed by weights and representations, a whole chapter is devoted to the study of KMS states and its physical interpretation as the states of thermal equilibrium, then the Tomita-Takesaki Modular Theory is presented, furthermore, we study analytical properties of the modular operator automorphism group, positive cones and bounded perturbations of states, and finally we start presenting multiple versions of noncommutative Lp-spaces.Apresentamos uma extensão da teoria de perturbações de estados KMS para uma classe de operadores ilimitados através dos espaços Lp não-comutativos. Além disso, provamos certa estabilidade do domínio do Operador Modular de um estado ||.||p-contínuo o que nos permite escrever a condições KMS para tempos múltiplos e obter sua analiticidade junto com majorantes para sua norma. Os principais resultados são o Teorema 5.1.15, o Teorema 5.1.16 e o Corolário 5.1.18. Além disso, nesse trabalho fazemos uma detalhada revisão, com contribuições menores devidas ao autor, começamos com uma descrição de álgebras C* e álgebras de von Neumann, seguida por pesos e representações, um capítulo inteiro é dedicado ao estudo de estados KMS e sua interpretação como estados de equilíbrio térmico, depois apresentamos a Teoria Modular de Tomita-Takesaki, além disso, estudamos as propriedades de analiticidade do grupo de automorfismo modular, cones positivos e perturbações de estados e finalmente, começamos a apresentar múltiplas versões dos espaços Lp não comutativos.Biblioteca Digitais de Teses e Dissertações da USPBarata, Joao Carlos AlvesJakel, Christian DieterSilva, Ricardo Correa da2018-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-21082018-225801/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-11-01T16:25:01Zoai:teses.usp.br:tde-21082018-225801Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-11-01T16:25:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Noncommutative Lp-Spaces and Perturbations of KMS States
Espaços Lp Não-Comutativos e Perturbações de Estados KMS
title Noncommutative Lp-Spaces and Perturbations of KMS States
spellingShingle Noncommutative Lp-Spaces and Perturbations of KMS States
Silva, Ricardo Correa da
espaços Lp não-comutativos
estados KMS
perturbações ilimitadas
title_short Noncommutative Lp-Spaces and Perturbations of KMS States
title_full Noncommutative Lp-Spaces and Perturbations of KMS States
title_fullStr Noncommutative Lp-Spaces and Perturbations of KMS States
title_full_unstemmed Noncommutative Lp-Spaces and Perturbations of KMS States
title_sort Noncommutative Lp-Spaces and Perturbations of KMS States
author Silva, Ricardo Correa da
author_facet Silva, Ricardo Correa da
author_role author
dc.contributor.none.fl_str_mv Barata, Joao Carlos Alves
Jakel, Christian Dieter
dc.contributor.author.fl_str_mv Silva, Ricardo Correa da
dc.subject.por.fl_str_mv espaços Lp não-comutativos
estados KMS
perturbações ilimitadas
topic espaços Lp não-comutativos
estados KMS
perturbações ilimitadas
description We extend the theory of perturbations of KMS states to some class of unbounded perturbations using noncommutative Lp-spaces. We also prove certain stability of the domain of the Modular Operator associated to a ||.||p-continuous state. This allows us to define an analytic multiple-time KMS condition and to obtain its analyticity together with some bounds to its norm. The main results are Theorem 5.1.15, Theorem 5.1.16 and Corollary 5.1.18. Apart from that, this work contains a detailed review, with minor contributions due to the author, starting with the description of C*-algebras and von Neumann algebras followed by weights and representations, a whole chapter is devoted to the study of KMS states and its physical interpretation as the states of thermal equilibrium, then the Tomita-Takesaki Modular Theory is presented, furthermore, we study analytical properties of the modular operator automorphism group, positive cones and bounded perturbations of states, and finally we start presenting multiple versions of noncommutative Lp-spaces.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21082018-225801/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21082018-225801/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090964079247360