Estimação de orientação de câmera em ambientes antrópicos a partir de edgels.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03072013-154035/ |
Resumo: | Esta tese apresenta o Corisco, um método para estimar a orientação de uma câmera a partir de uma única imagem capturada de um ambiente antrópico. O Corisco foi desenvolvido com o objetivo de atender às necessidades de aplicações de Robótica Móvel e da análise de grandes conjuntos de imagens, o que significa que o método deve não só apresentar um bom desempenho computacional, mas também deve poder utilizar diferentes modelos de câmera, permitir realizar um comprometimento entre a velocidade de cálculo e acurácia dos resultados, e ainda deve poder tanto aproveitar estimativas iniciais da solução, quanto dispensá-las. O Corisco apresenta todas estas características. Os ambientes considerados possuem um sistema referencial natural com três eixos ortogonais, e contêm conjuntos de retas paralelas a estes eixos. A orientação estimada é uma rotação tridimensional entre o referencial natural e o sistema referencial da câmera. O Corisco requer o conhecimento do modelo de câmera, mas qualquer modelo de câmera pode ser utilizado. Corisco analisa imagens utilizando um processo de extração de edgels, que são pontos localizados nas projeções das retas do ambiente, associados à direção tangencial da projeção da reta naquele ponto. Esta extração de edgels utiliza uma máscara em forma de grade que permite sub-amostrar os dados, criando um comprometimento entre velocidade e precisão. A orientação é estimada através de um processo de otimização em dois passos que minimiza uma função objetivo definida pela técnica de M-estimação, com uma função de erro redescendente. Esta técnica é equivalente à aplicação de estimação MAP ou EM nos métodos similares existentes. O primeiro passo da otimização utiliza o algoritmo RANSAC, permitindo ao Corisco funcionar sem estimativas iniciais, e o segundo passo é um processo de otimização contínua com restrições que explora a parametrização da orientação por quaternos. O Corisco foi testado com diferentes modelos de câmera, incluindo a projeção perspectiva, um modelo com distorção radial, e duas projeções onidirecionais, a polar equidistante e a equiretangular. O tempo médio de cálculo pode ser controlado através de dois parâmetros, que podem também afetar a exatidão. A exatidão observada ao comparar as estimativas do Corisco com orientações de referência foi tipicamente próxima a 1 grau para tempos de execução acima de 20 segundos, e aproximadamente 4 graus para menos de dois segundos. Este desempenho alcançou os objetivos estabelecidos, e os resultados experimentais validaram o método para aplicações práticas. |
id |
USP_9a5aa3e8da753c149d8e9da0de21857a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03072013-154035 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels.Camera orientation estimation in anthropic environments from edgels.Artificial intelligenceComputer visionImage processingInteligência artificialPattern recognitionProcessamento de imagensReconhecimento de padrõesVisão computacionalEsta tese apresenta o Corisco, um método para estimar a orientação de uma câmera a partir de uma única imagem capturada de um ambiente antrópico. O Corisco foi desenvolvido com o objetivo de atender às necessidades de aplicações de Robótica Móvel e da análise de grandes conjuntos de imagens, o que significa que o método deve não só apresentar um bom desempenho computacional, mas também deve poder utilizar diferentes modelos de câmera, permitir realizar um comprometimento entre a velocidade de cálculo e acurácia dos resultados, e ainda deve poder tanto aproveitar estimativas iniciais da solução, quanto dispensá-las. O Corisco apresenta todas estas características. Os ambientes considerados possuem um sistema referencial natural com três eixos ortogonais, e contêm conjuntos de retas paralelas a estes eixos. A orientação estimada é uma rotação tridimensional entre o referencial natural e o sistema referencial da câmera. O Corisco requer o conhecimento do modelo de câmera, mas qualquer modelo de câmera pode ser utilizado. Corisco analisa imagens utilizando um processo de extração de edgels, que são pontos localizados nas projeções das retas do ambiente, associados à direção tangencial da projeção da reta naquele ponto. Esta extração de edgels utiliza uma máscara em forma de grade que permite sub-amostrar os dados, criando um comprometimento entre velocidade e precisão. A orientação é estimada através de um processo de otimização em dois passos que minimiza uma função objetivo definida pela técnica de M-estimação, com uma função de erro redescendente. Esta técnica é equivalente à aplicação de estimação MAP ou EM nos métodos similares existentes. O primeiro passo da otimização utiliza o algoritmo RANSAC, permitindo ao Corisco funcionar sem estimativas iniciais, e o segundo passo é um processo de otimização contínua com restrições que explora a parametrização da orientação por quaternos. O Corisco foi testado com diferentes modelos de câmera, incluindo a projeção perspectiva, um modelo com distorção radial, e duas projeções onidirecionais, a polar equidistante e a equiretangular. O tempo médio de cálculo pode ser controlado através de dois parâmetros, que podem também afetar a exatidão. A exatidão observada ao comparar as estimativas do Corisco com orientações de referência foi tipicamente próxima a 1 grau para tempos de execução acima de 20 segundos, e aproximadamente 4 graus para menos de dois segundos. Este desempenho alcançou os objetivos estabelecidos, e os resultados experimentais validaram o método para aplicações práticas.This thesis presents Corisco, a method to estimate the orientation of a camera from a single image captured from an anthropic environment. Corisco was developed with the objective of answering the needs of Mobile Robotics applications, and of the analysis of large set of images, what means that the method should present not only a good computational performance, but it should also be able to use different camera models, allow to control the compromise between calculation speed and result precision, and must also be capable of both exploiting initial estimates of the result, and of operating without any initial estimates. Corisco presents all of these characteristics. The considered environments have a natural reference system with three orthogonal axes, and contain sets of lines parallel to these axes. The estimated orientation is a three-dimensional rotation between the natural reference frame and the camera frame. Corisco requires the knowledge of the camera model, but any camera model can be used. Corisco analyzes images using a process that extracts edgels, which are points located on the projections of the environment lines, associated with the tangential direction of the line projection at that point. This edgel extraction technique uses a grid mask that can sub-sample the data, creating a compromise between speed and precision. The orientation is estimated through a two-step optimization process that minimizes an objective function defined by the M-estimation technique, using a redescending error function. This technique is equivalent to the application of the MAP or the EM estimation in similar existing methods. The first optimization step uses the RANSAC algorithm, allowing Corisco to work without initial estimates, and the second step is a continuous and constrained optimization process that explores the orientation parametrization by quaternions. Corisco was tested with different camera models, including the perspective projection, a model with radial distortion, and two omnidirectional projections, the polar equidistant and the equirectangular. The mean calculation time can be controlled through a couple of parameters, which may also affect the accuracy. The accuracy observed by comparing the Corisco estimates with reference orientations was typically near 1 degree for execution times above 20 seconds, and approximately 4 degrees for less than two seconds. This performance attained the established objectives, and the experimental results validated the method for practical applications.Biblioteca Digitais de Teses e Dissertações da USPReali Costa, Anna HelenaWerneck, Nicolau Leal2012-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-03072013-154035/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-03072013-154035Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. Camera orientation estimation in anthropic environments from edgels. |
title |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
spellingShingle |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. Werneck, Nicolau Leal Artificial intelligence Computer vision Image processing Inteligência artificial Pattern recognition Processamento de imagens Reconhecimento de padrões Visão computacional |
title_short |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
title_full |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
title_fullStr |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
title_full_unstemmed |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
title_sort |
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels. |
author |
Werneck, Nicolau Leal |
author_facet |
Werneck, Nicolau Leal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Reali Costa, Anna Helena |
dc.contributor.author.fl_str_mv |
Werneck, Nicolau Leal |
dc.subject.por.fl_str_mv |
Artificial intelligence Computer vision Image processing Inteligência artificial Pattern recognition Processamento de imagens Reconhecimento de padrões Visão computacional |
topic |
Artificial intelligence Computer vision Image processing Inteligência artificial Pattern recognition Processamento de imagens Reconhecimento de padrões Visão computacional |
description |
Esta tese apresenta o Corisco, um método para estimar a orientação de uma câmera a partir de uma única imagem capturada de um ambiente antrópico. O Corisco foi desenvolvido com o objetivo de atender às necessidades de aplicações de Robótica Móvel e da análise de grandes conjuntos de imagens, o que significa que o método deve não só apresentar um bom desempenho computacional, mas também deve poder utilizar diferentes modelos de câmera, permitir realizar um comprometimento entre a velocidade de cálculo e acurácia dos resultados, e ainda deve poder tanto aproveitar estimativas iniciais da solução, quanto dispensá-las. O Corisco apresenta todas estas características. Os ambientes considerados possuem um sistema referencial natural com três eixos ortogonais, e contêm conjuntos de retas paralelas a estes eixos. A orientação estimada é uma rotação tridimensional entre o referencial natural e o sistema referencial da câmera. O Corisco requer o conhecimento do modelo de câmera, mas qualquer modelo de câmera pode ser utilizado. Corisco analisa imagens utilizando um processo de extração de edgels, que são pontos localizados nas projeções das retas do ambiente, associados à direção tangencial da projeção da reta naquele ponto. Esta extração de edgels utiliza uma máscara em forma de grade que permite sub-amostrar os dados, criando um comprometimento entre velocidade e precisão. A orientação é estimada através de um processo de otimização em dois passos que minimiza uma função objetivo definida pela técnica de M-estimação, com uma função de erro redescendente. Esta técnica é equivalente à aplicação de estimação MAP ou EM nos métodos similares existentes. O primeiro passo da otimização utiliza o algoritmo RANSAC, permitindo ao Corisco funcionar sem estimativas iniciais, e o segundo passo é um processo de otimização contínua com restrições que explora a parametrização da orientação por quaternos. O Corisco foi testado com diferentes modelos de câmera, incluindo a projeção perspectiva, um modelo com distorção radial, e duas projeções onidirecionais, a polar equidistante e a equiretangular. O tempo médio de cálculo pode ser controlado através de dois parâmetros, que podem também afetar a exatidão. A exatidão observada ao comparar as estimativas do Corisco com orientações de referência foi tipicamente próxima a 1 grau para tempos de execução acima de 20 segundos, e aproximadamente 4 graus para menos de dois segundos. Este desempenho alcançou os objetivos estabelecidos, e os resultados experimentais validaram o método para aplicações práticas. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03072013-154035/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03072013-154035/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256640100761600 |