Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution

Detalhes bibliográficos
Autor(a) principal: Morita, Lia Hanna Martins
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-08112022-155525/
Resumo: Conventional reliability analysis techniques are focused on the occurrence of failures over time. However, in certain situations where the occurrence of failures is tiny or almost null, the estimation of the quantities that describe the failure process is compromised. In this context the degradation models were developed, which have as experimental data not the failure, but some quality characteristic attached to it. Degradation analysis can provide information about the components lifetime distribution without actually observing failures. In this thesis we proposed different methodologies for degradation data based on the inverse Gaussian distribution. Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian process model with frailty as a feasible tool to explore the influence of unobserved covariates, and a comparative study with the traditional inverse Gaussian process based on simulated data was made. We also presented a mixture inverse Gaussian process model in burn-in tests, whose main interest is to determine the burn-in time and the optimal cutoff point that screen out the weak units from the normal ones in a production row, and a misspecification study was carried out with the Wiener and gamma processes. Finally, we considered a more flexible model with a set of cutoff points, wherein the misclassification probabilities are obtained by the exact method with the bivariate inverse Gaussian distribution or an approximate method based on copula theory. The application of the methodology was based on three real datasets in the literature: the degradation of LASER components, locomotive wheels and cracks in metals.
id USP_9d383acb1ad9456d469e9f681126b4e6
oai_identifier_str oai:teses.usp.br:tde-08112022-155525
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distributionModelagem de degradação para análise de confiabilidade com estrutura dependente do tempo baseada na distribuição gaussiana inversaAnálise de degradaçãoBurn-in testsDegradation analysisDistribuição gaussiana inversaFragilidadeFrailtyInverse gaussian distributionInverse gaussian processProcesso gaussiano inversoTestes de burn-in.Conventional reliability analysis techniques are focused on the occurrence of failures over time. However, in certain situations where the occurrence of failures is tiny or almost null, the estimation of the quantities that describe the failure process is compromised. In this context the degradation models were developed, which have as experimental data not the failure, but some quality characteristic attached to it. Degradation analysis can provide information about the components lifetime distribution without actually observing failures. In this thesis we proposed different methodologies for degradation data based on the inverse Gaussian distribution. Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian process model with frailty as a feasible tool to explore the influence of unobserved covariates, and a comparative study with the traditional inverse Gaussian process based on simulated data was made. We also presented a mixture inverse Gaussian process model in burn-in tests, whose main interest is to determine the burn-in time and the optimal cutoff point that screen out the weak units from the normal ones in a production row, and a misspecification study was carried out with the Wiener and gamma processes. Finally, we considered a more flexible model with a set of cutoff points, wherein the misclassification probabilities are obtained by the exact method with the bivariate inverse Gaussian distribution or an approximate method based on copula theory. The application of the methodology was based on three real datasets in the literature: the degradation of LASER components, locomotive wheels and cracks in metals.As técnicas convencionais de análise de confiabilidade são voltadas para a ocorrência de falhas ao longo do tempo. Contudo, em determinadas situações nas quais a ocorrência de falhas é pequena ou quase nula, a estimação das quantidades que descrevem os tempos de falha fica comprometida. Neste contexto foram desenvolvidos os modelos de degradação, que possuem como dado experimental não a falha, mas sim alguma característica mensurável a ela atrelada. A análise de degradação pode fornecer informações sobre a distribuição de vida dos componentes sem realmente observar falhas. Assim, nesta tese nós propusemos diferentes metodologias para dados de degradação baseados na distribuição gaussiana inversa. Inicialmente, nós introduzimos o modelo de taxa de deterioração gaussiana inversa para dados de degradação e um estudo de suas propriedades assintóticas com dados simulados. Em seguida, nós apresentamos um modelo de processo gaussiano inverso com fragilidade considerando que a fragilidade é uma boa ferramenta para explorar a influência de covariáveis não observadas, e um estudo comparativo com o processo gaussiano inverso usual baseado em dados simulados foi realizado. Também mostramos um modelo de mistura de processos gaussianos inversos em testes de burn-in, onde o principal interesse é determinar o tempo de burn-in e o ponto de corte ótimo para separar os itens bons dos itens ruins em uma linha de produção, e foi realizado um estudo de má especificação com os processos de Wiener e gamma. Por fim, nós consideramos um modelo mais flexível com um conjunto de pontos de corte, em que as probabilidades de má classificação são estimadas através do método exato com distribuição gaussiana inversa bivariada ou em um método aproximado baseado na teoria de cópulas. A aplicação da metodologia foi realizada com três conjuntos de dados reais de degradação de componentes de LASER, rodas de locomotivas e trincas em metais.Biblioteca Digitais de Teses e Dissertações da USPTomazella, Vera Lucia DamascenoMorita, Lia Hanna Martins2017-04-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-08112022-155525/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-11-08T19:31:18Zoai:teses.usp.br:tde-08112022-155525Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-11-08T19:31:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
Modelagem de degradação para análise de confiabilidade com estrutura dependente do tempo baseada na distribuição gaussiana inversa
title Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
spellingShingle Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
Morita, Lia Hanna Martins
Análise de degradação
Burn-in tests
Degradation analysis
Distribuição gaussiana inversa
Fragilidade
Frailty
Inverse gaussian distribution
Inverse gaussian process
Processo gaussiano inverso
Testes de burn-in.
title_short Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
title_full Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
title_fullStr Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
title_full_unstemmed Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
title_sort Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
author Morita, Lia Hanna Martins
author_facet Morita, Lia Hanna Martins
author_role author
dc.contributor.none.fl_str_mv Tomazella, Vera Lucia Damasceno
dc.contributor.author.fl_str_mv Morita, Lia Hanna Martins
dc.subject.por.fl_str_mv Análise de degradação
Burn-in tests
Degradation analysis
Distribuição gaussiana inversa
Fragilidade
Frailty
Inverse gaussian distribution
Inverse gaussian process
Processo gaussiano inverso
Testes de burn-in.
topic Análise de degradação
Burn-in tests
Degradation analysis
Distribuição gaussiana inversa
Fragilidade
Frailty
Inverse gaussian distribution
Inverse gaussian process
Processo gaussiano inverso
Testes de burn-in.
description Conventional reliability analysis techniques are focused on the occurrence of failures over time. However, in certain situations where the occurrence of failures is tiny or almost null, the estimation of the quantities that describe the failure process is compromised. In this context the degradation models were developed, which have as experimental data not the failure, but some quality characteristic attached to it. Degradation analysis can provide information about the components lifetime distribution without actually observing failures. In this thesis we proposed different methodologies for degradation data based on the inverse Gaussian distribution. Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian process model with frailty as a feasible tool to explore the influence of unobserved covariates, and a comparative study with the traditional inverse Gaussian process based on simulated data was made. We also presented a mixture inverse Gaussian process model in burn-in tests, whose main interest is to determine the burn-in time and the optimal cutoff point that screen out the weak units from the normal ones in a production row, and a misspecification study was carried out with the Wiener and gamma processes. Finally, we considered a more flexible model with a set of cutoff points, wherein the misclassification probabilities are obtained by the exact method with the bivariate inverse Gaussian distribution or an approximate method based on copula theory. The application of the methodology was based on three real datasets in the literature: the degradation of LASER components, locomotive wheels and cracks in metals.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-08112022-155525/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-08112022-155525/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256816689348608