Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06112024-180656/ |
Resumo: | Soybean is a crop of great global importance, especially in Brazil, where it faces significant threats from pests such as stink bugs, which cause considerable productivity losses. Genetic resistance to stink bugs is the most efficient control strategy, but its quantitative nature makes implementation in breeding programs challenging. Traditionally, manual phenotyping is labor-intensive and imprecise, creating a bottleneck in selecting desirable traits. This studys main objective is to investigate soybean resistance to stink bugs through innovative strategies based on high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs), genome-wide association studies (GWAS), and genomic selection (GS). We used 290 soybean lines, phenotyped over two to three growing seasons under natural stink bug infestations. UAVs equipped with RGB cameras captured aerial images at different flight periods. The manually measured phenotypic traits were correlated with color, texture, and color histogram indices derived from the images. Machine learning (ML) modelsAdaBoost, SVM, and MLPwere tested to predict these traits. GWAS was performed to identify SNPs associated with the phenotypic traits, while multi-trait GS models were developed to predict resistance and productivity. Vegetative indices, especially the VARI index, and texture-based indices showed high correlation with manually measured traits in highly stressful environments. However, ML models were less effective in predicting stink bug resistance under high infestation levels. GWAS identified 71 significant SNPs, with genes annotated in 52 of these regions, distributed across almost all soybean chromosomes. Specific SNPs showed a high explanation of phenotypic variation, such as GM02_19807216 and GM12_3274686, and many were associated with both types of traits. The results highlight specific genomic regions and candidate genes that can be targeted in future programs, promoting significant advances in soybean resistance to stink bugs. The integration of image-based phenotyping with GS significantly increased the predictive ability of the models, especially in environments with high pest pressure. This study is pioneering in the field and demonstrates the feasibility and effectiveness of using image-based traits for phenotyping stink bug resistance in soybean breeding programs. The integration of HTP in genomic studies offers an effective approach to accelerate the selection process, reducing costs and time, and allowing for more efficient and precise breeding strategies. The results provide a solid foundation for future research and development of more resistant and productive soybean cultivars. |
id |
USP_9d3e7a2d7d69e468b8abc1f653f3ae44 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06112024-180656 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complexAvanços no melhoramento de soja: uso de ferramentas genômicas e fenotípicas para resistência ao complexo de percevejosAssociações genômicasFenotipagem de alto rendimentoGenomic associationsGenomic selectionHigh-throughput phenotypingInsect resistanceMelhoramento de precisãoPrecision breedingResistência a InsetosSeleção GenômicaSoybean is a crop of great global importance, especially in Brazil, where it faces significant threats from pests such as stink bugs, which cause considerable productivity losses. Genetic resistance to stink bugs is the most efficient control strategy, but its quantitative nature makes implementation in breeding programs challenging. Traditionally, manual phenotyping is labor-intensive and imprecise, creating a bottleneck in selecting desirable traits. This studys main objective is to investigate soybean resistance to stink bugs through innovative strategies based on high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs), genome-wide association studies (GWAS), and genomic selection (GS). We used 290 soybean lines, phenotyped over two to three growing seasons under natural stink bug infestations. UAVs equipped with RGB cameras captured aerial images at different flight periods. The manually measured phenotypic traits were correlated with color, texture, and color histogram indices derived from the images. Machine learning (ML) modelsAdaBoost, SVM, and MLPwere tested to predict these traits. GWAS was performed to identify SNPs associated with the phenotypic traits, while multi-trait GS models were developed to predict resistance and productivity. Vegetative indices, especially the VARI index, and texture-based indices showed high correlation with manually measured traits in highly stressful environments. However, ML models were less effective in predicting stink bug resistance under high infestation levels. GWAS identified 71 significant SNPs, with genes annotated in 52 of these regions, distributed across almost all soybean chromosomes. Specific SNPs showed a high explanation of phenotypic variation, such as GM02_19807216 and GM12_3274686, and many were associated with both types of traits. The results highlight specific genomic regions and candidate genes that can be targeted in future programs, promoting significant advances in soybean resistance to stink bugs. The integration of image-based phenotyping with GS significantly increased the predictive ability of the models, especially in environments with high pest pressure. This study is pioneering in the field and demonstrates the feasibility and effectiveness of using image-based traits for phenotyping stink bug resistance in soybean breeding programs. The integration of HTP in genomic studies offers an effective approach to accelerate the selection process, reducing costs and time, and allowing for more efficient and precise breeding strategies. The results provide a solid foundation for future research and development of more resistant and productive soybean cultivars.A soja é uma cultura de grande importância global, especialmente no Brasil, onde enfrenta ameaças significativas de pragas, como os percevejos, que causam consideráveis perdas de produtividade. A resistência genética aos percevejos é a estratégia de controle mais eficiente, mas sua natureza quantitativa dificulta a implementação em programas de melhoramento. Tradicionalmente, a fenotipagem manual é trabalhosa e imprecisa, criando um gargalo na seleção de características desejáveis. Este trabalho tem como objetivo principal investigar a resistência da soja aos percevejos através de estratégias inovadoras baseadas em fenotipagem de alta capacidade (HTP) por meio de veículos aéreos não tripulados (UAVs), estudos de associação genômica ampla (GWAS) e seleção genômica (GS). Foram utilizadas 290 linhagens de soja, fenotipadas ao longo de duas a três estações de cultivo sob infestações naturais de percevejos. UAVs equipados com câmeras RGB capturaram imagens aéreas em diferentes períodos de voo. As características fenotípicas manuais foram correlacionadas com índices de cor, textura e histogramas de cor derivados das imagens. Modelos de aprendizado de máquina (ML) - AdaBoost, SVM e MLP - foram testados para prever essas características. GWAS foi realizado para identificar SNPs associados às características fenotipadas, enquanto modelos de GS multi-características foram desenvolvidos para prever resistência e produtividade. Os índices vegetativos, especialmente o índice VARI, e os índices baseados em textura mostraram alta correlação com as características mensuradas manualmente em ambientes altamente estressantes. No entanto, os modelos de ML foram menos eficazes na previsão de resistência aos percevejos sob altos níveis de infestação. O GWAS identificou 71 SNPs significativos, com genes anotados em 52 dessas regiões, distribuídos em quase todos os cromossomos da soja. SNPs específicos mostraram alta explicação da variação fenotípica, como GM02_19807216 e GM12_3274686, e muitos deles se encontram associados com os dois tipos de características. Os resultados destacam regiões genômicas específicas e genes candidatos que podem ser alvo em programas futuros, promovendo avanços significativos na resistência da soja aos percevejos. A integração de fenotipagem baseada em imagens com GS aumentou significativamente a capacidade preditiva dos modelos, especialmente em ambientes com alta pressão de pragas. Este estudo é pioneiro na área e demonstra a viabilidade e eficácia do uso de características baseadas em imagem para a fenotipagem de resistência aos percevejos em programas de melhoramento de soja. A integração de HTP em estudos genômicos oferece uma abordagem eficaz para acelerar o processo de seleção, reduzindo custos e tempo, e permitindo estratégias de melhoramento mais eficientes e precisas. Os resultados fornecem uma base sólida para futuras pesquisas e desenvolvimento de cultivares de soja mais resistentes e produtivas.Biblioteca Digitais de Teses e Dissertações da USPPinheiro, Jose BaldinOliveira, Maiara de2024-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-06112024-180656/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-11-07T19:04:02Zoai:teses.usp.br:tde-06112024-180656Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-11-07T19:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex Avanços no melhoramento de soja: uso de ferramentas genômicas e fenotípicas para resistência ao complexo de percevejos |
title |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
spellingShingle |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex Oliveira, Maiara de Associações genômicas Fenotipagem de alto rendimento Genomic associations Genomic selection High-throughput phenotyping Insect resistance Melhoramento de precisão Precision breeding Resistência a Insetos Seleção Genômica |
title_short |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
title_full |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
title_fullStr |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
title_full_unstemmed |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
title_sort |
Advances in soybean breeding: use of genomic and phenotypic tools for resistance to the stink bug complex |
author |
Oliveira, Maiara de |
author_facet |
Oliveira, Maiara de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Jose Baldin |
dc.contributor.author.fl_str_mv |
Oliveira, Maiara de |
dc.subject.por.fl_str_mv |
Associações genômicas Fenotipagem de alto rendimento Genomic associations Genomic selection High-throughput phenotyping Insect resistance Melhoramento de precisão Precision breeding Resistência a Insetos Seleção Genômica |
topic |
Associações genômicas Fenotipagem de alto rendimento Genomic associations Genomic selection High-throughput phenotyping Insect resistance Melhoramento de precisão Precision breeding Resistência a Insetos Seleção Genômica |
description |
Soybean is a crop of great global importance, especially in Brazil, where it faces significant threats from pests such as stink bugs, which cause considerable productivity losses. Genetic resistance to stink bugs is the most efficient control strategy, but its quantitative nature makes implementation in breeding programs challenging. Traditionally, manual phenotyping is labor-intensive and imprecise, creating a bottleneck in selecting desirable traits. This studys main objective is to investigate soybean resistance to stink bugs through innovative strategies based on high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs), genome-wide association studies (GWAS), and genomic selection (GS). We used 290 soybean lines, phenotyped over two to three growing seasons under natural stink bug infestations. UAVs equipped with RGB cameras captured aerial images at different flight periods. The manually measured phenotypic traits were correlated with color, texture, and color histogram indices derived from the images. Machine learning (ML) modelsAdaBoost, SVM, and MLPwere tested to predict these traits. GWAS was performed to identify SNPs associated with the phenotypic traits, while multi-trait GS models were developed to predict resistance and productivity. Vegetative indices, especially the VARI index, and texture-based indices showed high correlation with manually measured traits in highly stressful environments. However, ML models were less effective in predicting stink bug resistance under high infestation levels. GWAS identified 71 significant SNPs, with genes annotated in 52 of these regions, distributed across almost all soybean chromosomes. Specific SNPs showed a high explanation of phenotypic variation, such as GM02_19807216 and GM12_3274686, and many were associated with both types of traits. The results highlight specific genomic regions and candidate genes that can be targeted in future programs, promoting significant advances in soybean resistance to stink bugs. The integration of image-based phenotyping with GS significantly increased the predictive ability of the models, especially in environments with high pest pressure. This study is pioneering in the field and demonstrates the feasibility and effectiveness of using image-based traits for phenotyping stink bug resistance in soybean breeding programs. The integration of HTP in genomic studies offers an effective approach to accelerate the selection process, reducing costs and time, and allowing for more efficient and precise breeding strategies. The results provide a solid foundation for future research and development of more resistant and productive soybean cultivars. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06112024-180656/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-06112024-180656/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256493183729664 |