Identificação da cobertura espacial de documentos usando mineração de textos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07122012-142831/ |
Resumo: | Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos |
id |
USP_9dbe0367e08693a831f58412b0bf8883 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07122012-142831 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Identificação da cobertura espacial de documentos usando mineração de textosIdentification of spatial coverage documents with miningAmbiguity problemNamed entity recognitionProblemas de ambiguidadeReconhecimento de entidades mencionadasResolição de topônimosToponym resolutionAtualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentosCurrently, it is usual that users take into account the geographical localization of the documents in the Information Retrieval process. However, the conventional information retrieval systems based on key-word matching do not consider which words can represent geographical entities that are spatially related to other entities in the documents. To solve this problem, it is necessary to enable the geo-referencing of texts by identifying the geographical entities present in text and associate them with their correct spatial location. The identification and disambiguation of the geographical entities present major challenges mainly from the linguistic point of view, since one location can have different types of associated ambiguity. The ambiguity problem causes noise in the process of information retrieval, since the same term may have relevant or irrelevant information associated. Thus, the main strategy to overcome these problems, include the identification of evidence to assist in the identification and disambiguation of locations in the texts. This study proposes a methodology that allows the identification and spatial localization of the documents, denominated SpatialCIM. The SpatialCIM methodology has the objective to organize the Topônym Resolution process. Therefore the main objective of this study is to evaluate and select disambiguation techniques that allow solving the toponym ambiguity in texts. Therefore, we proposed and developed the approaches of (1) Disambiguation for Points and (2) Textual and Structural Disambiguation. These approaches exploit two different techniques of toponym disambiguation, which generate and desambiguate the associated paths with the recognized geographical toponym for each document. Therefore the hypothesis is, that the use of the toponyms disambiguation techniques enable a better spatial localization of documents. From the results it was possible to demonstrate that the disambiguation techniques improve the precision and recall for the spatial classification of documents. The positive effect of using a linguistic tool for the process of geographical entities recognition was also demonstrated. Thus, it was proved the usefulness of the disambiguation process for obtaining a spatial coverage of the documentBiblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraVargas, Rosa Nathalie Portugal2012-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-07122012-142831/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:34Zoai:teses.usp.br:tde-07122012-142831Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:34Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Identificação da cobertura espacial de documentos usando mineração de textos Identification of spatial coverage documents with mining |
title |
Identificação da cobertura espacial de documentos usando mineração de textos |
spellingShingle |
Identificação da cobertura espacial de documentos usando mineração de textos Vargas, Rosa Nathalie Portugal Ambiguity problem Named entity recognition Problemas de ambiguidade Reconhecimento de entidades mencionadas Resolição de topônimos Toponym resolution |
title_short |
Identificação da cobertura espacial de documentos usando mineração de textos |
title_full |
Identificação da cobertura espacial de documentos usando mineração de textos |
title_fullStr |
Identificação da cobertura espacial de documentos usando mineração de textos |
title_full_unstemmed |
Identificação da cobertura espacial de documentos usando mineração de textos |
title_sort |
Identificação da cobertura espacial de documentos usando mineração de textos |
author |
Vargas, Rosa Nathalie Portugal |
author_facet |
Vargas, Rosa Nathalie Portugal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rezende, Solange Oliveira |
dc.contributor.author.fl_str_mv |
Vargas, Rosa Nathalie Portugal |
dc.subject.por.fl_str_mv |
Ambiguity problem Named entity recognition Problemas de ambiguidade Reconhecimento de entidades mencionadas Resolição de topônimos Toponym resolution |
topic |
Ambiguity problem Named entity recognition Problemas de ambiguidade Reconhecimento de entidades mencionadas Resolição de topônimos Toponym resolution |
description |
Atualmente, é comum que usuários levem em consideração a localização geográfica dos documentos, é dizer considerar o escopo geográfico que está sendo tratado no contexto do documento, nos processos de Recuperação de Informação. No entanto, os sistemas convencionais de extração de informação que estão baseados em palavras-chave não consideram que as palavras podem representar entidades geográficas espacialmente relacionadas com outras entidades nos documentos. Para resolver esse problema, é necessário viabilizar o georreferenciamento dos textos, ou seja, identificar as entidades geográficas presentes e associá-las com sua correta localização espacial. A identificação e desambiguação das entidades geográficas apresenta desafios importantes, principalmente do ponto de vista linguístico, já que um topônimo, pode possuir variados tipos de ambiguidade associados. Esse problema de ambiguidade causa ruido nos processos de recuperação de informação, já que o mesmo termo pode ter informação relevante ou irrelevante associada. Assim, a principal estratégia para superar os problemas de ambiguidade, compreende a identificação de evidências que auxiliem na identificação e desambiguação das localidades nos textos. O presente trabalho propõe uma metodologia que permite identificar e determinar a cobertura espacial dos documentos, denominada SpatialCIM. A metodologia SpatialCIM tem o objetivo de organizar os processos de resolução de topônimos. Assim, o principal objetivo deste trabalho é avaliar e selecionar técnicas de desambiguação que permitam resolver a ambiguidade dos topônimos nos textos. Para isso, foram propostas e desenvolvidas as abordagens de (1)Desambiguação por Pontos e a (2)Desambiguação Textual e Estrutural. Essas abordagens, exploram duas técnicas diferentes de desambiguação de topônimos, as quais, geram e desambiguam os caminhos geográficos associados aos topônimos reconhecidos para cada documento. Assim, a hipótese desta pesquisa é que o uso das técnicas de desambiguação de topônimos viabilizam uma melhor localização espacial dos documentos. A partir dos resultados obtidos neste trabalho, foi possível demonstrar que as técnicas de desambiguação melhoram a precisão e revocação na classificação espacial dos documentos. Demonstrou-se também o impacto positivo do uso de uma ferramenta linguística no processo de reconhecimento das entidades geográficas. Assim, foi demostrada a utilidade dos processos de desambiguação para a obtenção da cobertura espacial dos documentos |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07122012-142831/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07122012-142831/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256773082218496 |