Comparing vector document representation methods for authorship identification

Detalhes bibliográficos
Autor(a) principal: Quintanilla, Pamela Rosy Revuelta
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05052021-040638/
Resumo: Over the years the information available in online media has had a great increase. In this sense, the automation of processing languages natural for large amounts of information gained importance, for example, text classification task. It can be used to identify the author (Authorship Identification); however, it requires Machine Learning techniques to identify the author, these techniques have given good results in NLP. In addition, Machine Learning receives the feature vector of the texts, which is extracted using vector document representation methods. The methods proposed for this research are grouped into three different approaches: i) methods based on vector space models, ii) methods based on word embeddings, and iii) methods based on graph embeddings, for this approach, we first model the texts as graphs. On the other hand, not all the methods are used for different languages because they can have different efficiency depending on the language of the analyzed texts. Therefore, the objective of this research is to compare several of these methods using literary texts in English and Spanish. In this way, we analyze whether the methods are efficient to represent several languages or its performance depends on the characteristic of every language. The results showed that the methods of Graph embeddings achieved the best performance for both languages, being that English reached a fairly high success rate. On the other hand, the other methods achieved good performance for English, however, the results for Spanish were not optimal. We believe that the results in Spanish were worse due to the morphological, lexical, and syntactic complexity that this language presents in comparison to English. For this reason, different approaches were compared for the mathematical representation of texts that try to cover the different aspects of a language.
id USP_9dd5fd935e8e7a49844c74c38fbf9de5
oai_identifier_str oai:teses.usp.br:tde-05052021-040638
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Comparing vector document representation methods for authorship identificationComparando métodos de representação vectorial de documentos para identificação de autoriaAprendizado máquinaAtribuição de autoriaAuthorship attributionClassificação de textoComplex networksExtração de característicasFeature extractionGraph embeddingGraph embeddingsMachine LearningRedes complexasText classificationWord embeddingsWord embeddingsOver the years the information available in online media has had a great increase. In this sense, the automation of processing languages natural for large amounts of information gained importance, for example, text classification task. It can be used to identify the author (Authorship Identification); however, it requires Machine Learning techniques to identify the author, these techniques have given good results in NLP. In addition, Machine Learning receives the feature vector of the texts, which is extracted using vector document representation methods. The methods proposed for this research are grouped into three different approaches: i) methods based on vector space models, ii) methods based on word embeddings, and iii) methods based on graph embeddings, for this approach, we first model the texts as graphs. On the other hand, not all the methods are used for different languages because they can have different efficiency depending on the language of the analyzed texts. Therefore, the objective of this research is to compare several of these methods using literary texts in English and Spanish. In this way, we analyze whether the methods are efficient to represent several languages or its performance depends on the characteristic of every language. The results showed that the methods of Graph embeddings achieved the best performance for both languages, being that English reached a fairly high success rate. On the other hand, the other methods achieved good performance for English, however, the results for Spanish were not optimal. We believe that the results in Spanish were worse due to the morphological, lexical, and syntactic complexity that this language presents in comparison to English. For this reason, different approaches were compared for the mathematical representation of texts that try to cover the different aspects of a language.Com o passar dos anos, as informações disponíveis na mídia online tiveram um grande aumento. Nesse sentido, ganhou importância a automatização de processamento de linguagens natural para grandes quantidades de informação, por exemplo, a tarefa de classificação de textos. Esta tarefa pode ser usada para identificar o autor, atribução de autoria, mas precisa de técnicas de Aprendizado Máquina para identificá-lo, o que têm dado bons resultados no PLN. Além disso, Aprendizado Máquina recebe o vetor característico dos textos os quais são extraídos utilizando métodos de representação vetorial de documentos. Os métodos propostos para esta investigação estão agrupados em três abordagens: i) métodos baseados em modelos de espaço vetorial, ii) métodos baseados em Word embeddings, e iii) métodos baseados em Graph embeddings, para esta abordagem, primeiro modelamos os textos como grafos. Por outro lado, nem todos os métodos são usados para diferentes idiomas, porque pode ter diferentes eficiências, dependendo do idioma dos textos analisados. Então, o objetivo desta pesquisa é comparar vários desses métodos utilizando textos literários em inglês e espanhol. Desta forma, nós analisamos se os métodos são eficientes para representar várias linguagens ou seu desempenho depende das características de cada linguagem. Os resultados mostraram que os métodos de Graph embeddings obtiveram bom desempenho para as duas linguagens, sendo que para o inglês alcançaram uma taxa de sucesso bastante elevada. Por outro lado, os demais métodos obtiveram bom desempenho para o inglês, porém os resultados para o espanhol não foram os ideais. Acreditamos que os resultados em espanhol foram piores devido à complexidade morfológica, lexical e sintática que este idioma apresenta em comparação ao inglês. Por esse motivo, foram comparadas diferentes abordagens para a representação matemática de textos que procuram abranger os diferentes aspectos de uma língua.Biblioteca Digitais de Teses e Dissertações da USPSilva, Flavio Soares Correa daQuintanilla, Pamela Rosy Revuelta2021-04-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-05052021-040638/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-15T00:58:02Zoai:teses.usp.br:tde-05052021-040638Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-15T00:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Comparing vector document representation methods for authorship identification
Comparando métodos de representação vectorial de documentos para identificação de autoria
title Comparing vector document representation methods for authorship identification
spellingShingle Comparing vector document representation methods for authorship identification
Quintanilla, Pamela Rosy Revuelta
Aprendizado máquina
Atribuição de autoria
Authorship attribution
Classificação de texto
Complex networks
Extração de características
Feature extraction
Graph embedding
Graph embeddings
Machine Learning
Redes complexas
Text classification
Word embeddings
Word embeddings
title_short Comparing vector document representation methods for authorship identification
title_full Comparing vector document representation methods for authorship identification
title_fullStr Comparing vector document representation methods for authorship identification
title_full_unstemmed Comparing vector document representation methods for authorship identification
title_sort Comparing vector document representation methods for authorship identification
author Quintanilla, Pamela Rosy Revuelta
author_facet Quintanilla, Pamela Rosy Revuelta
author_role author
dc.contributor.none.fl_str_mv Silva, Flavio Soares Correa da
dc.contributor.author.fl_str_mv Quintanilla, Pamela Rosy Revuelta
dc.subject.por.fl_str_mv Aprendizado máquina
Atribuição de autoria
Authorship attribution
Classificação de texto
Complex networks
Extração de características
Feature extraction
Graph embedding
Graph embeddings
Machine Learning
Redes complexas
Text classification
Word embeddings
Word embeddings
topic Aprendizado máquina
Atribuição de autoria
Authorship attribution
Classificação de texto
Complex networks
Extração de características
Feature extraction
Graph embedding
Graph embeddings
Machine Learning
Redes complexas
Text classification
Word embeddings
Word embeddings
description Over the years the information available in online media has had a great increase. In this sense, the automation of processing languages natural for large amounts of information gained importance, for example, text classification task. It can be used to identify the author (Authorship Identification); however, it requires Machine Learning techniques to identify the author, these techniques have given good results in NLP. In addition, Machine Learning receives the feature vector of the texts, which is extracted using vector document representation methods. The methods proposed for this research are grouped into three different approaches: i) methods based on vector space models, ii) methods based on word embeddings, and iii) methods based on graph embeddings, for this approach, we first model the texts as graphs. On the other hand, not all the methods are used for different languages because they can have different efficiency depending on the language of the analyzed texts. Therefore, the objective of this research is to compare several of these methods using literary texts in English and Spanish. In this way, we analyze whether the methods are efficient to represent several languages or its performance depends on the characteristic of every language. The results showed that the methods of Graph embeddings achieved the best performance for both languages, being that English reached a fairly high success rate. On the other hand, the other methods achieved good performance for English, however, the results for Spanish were not optimal. We believe that the results in Spanish were worse due to the morphological, lexical, and syntactic complexity that this language presents in comparison to English. For this reason, different approaches were compared for the mathematical representation of texts that try to cover the different aspects of a language.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05052021-040638/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05052021-040638/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256692707819520