Modeling survival data based on a reparameterized weighted Lindley distribution

Detalhes bibliográficos
Autor(a) principal: Mota, Alex Leal
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13092022-102726/
Resumo: In this work, we propose different statistical modeling for survival data based on a repara- meterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the k-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long- term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.
id USP_9e27290732d590d62369f42b087d4dc0
oai_identifier_str oai:teses.usp.br:tde-13092022-102726
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modeling survival data based on a reparameterized weighted Lindley distributionModelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizadaCure fractionDistribuição de Lindley ponderada reparametrizadaFração de curaFrailty modelGeneralized time-dependent logistic modelMaximum likelihood methodMétodo da máxima verossimilhançaModelo de fragilidadeModelo logístico generalizado dependente do tempoNon-proportional hazardsReparameterized weighted Lindley distributionRiscos não proporcionaisIn this work, we propose different statistical modeling for survival data based on a repara- meterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the k-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long- term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.Neste trabalho, propomos diferentes modelagens estatísticas para dados de sobrevivência basea- das em uma distribuição de Lindley ponderada reparametrizada. Inicialmente, apresentamos esta distribuição e estudamos suas propriedades matemáticas, estimação de máxima verossimilhança e simulações numéricas. Em seguida, propomos um novo modelo de fragilidade usando a distri- buição de Lindley ponderada reparametrizada para modelar a heterogeneidade não observada em dados de sobrevivência univariados. A fragilidade é introduzida multiplicativamente na função de risco de base. Obtemos as funções de sobrevivência e risco não condicionais através da função transformada de Laplace da distribuição de fragilidade. Assumimos as funções de risco das distribuições Weibull e Gompertz como as funções de risco de base e usamos o método de máxima verossimilhança para estimar os parâmetros dos modelos resultantes. Estudos de si- mulação são realizados para verificar o comportamento dos estimadores propostos sob diferentes proporções de censura à direita e para avaliar o desempenho do teste da razão de verossimilhança para detectar heterogeneidade não observada em diferentes tamanhos amostrais. Além disso, propomos um modelo de longa duração com fragilidade Lindley ponderada reparametrizada. Uma vantagem do modelo proposto é modelar conjuntamente a heterogeneidade entre os pa- cientes por suas fragilidades e a presença de uma fração curada. Assumimos que o número desconhecido de causas competitivas que podem influenciar o tempo de sobrevivência segue uma distribuição binomial negativa e que o tempo para a k-ésima causa competitiva produzir o evento de interesse segue o modelo de fragilidade de Lindley ponderado reparametrizado com distribuição de base de Weibull. Alguns casos especiais do modelo são apresentados e a fração de cura é modelada usando a função de ligação logit. Novamente, usamos o método de máxima verossimilhança sob censura aleatória à direita para estimar os parâmetros do modelo proposto. Além disso, apresentamos estudos de simulação de Monte Carlo para verificar o comportamento dos estimadores de máxima verossimilhança assumindo diferentes tamanhos de amostra e proporções de censura. Finalmente, estendemos o modelo de regressão logística generalizado dependente do tempo incorporando fragilidades de Lindley ponderadas reparame- trizadas. Essa modelagem proposta possui várias características importantes, tais como riscos não proporcionais, identifica a presença de sobreviventes de longa duração sem a adição de novos parâmetros, captura a heterogeneidade não observada, permite a interseção de curvas de sobrevivência e permite função de risco decrescente ou unimodal. Novamente, a estimação de parâmetros é realizada usando o método de máxima verossimilhança. Estudos de simulação de Monte Carlo são conduzidos para avaliar as propriedades assintóticas dos estimadores, bem como algumas propriedades do modelo. A potencialidade de todos os modelos propostos é analisada empregando conjuntos de dados reais e comparações de modelos são realizadas.Biblioteca Digitais de Teses e Dissertações da USPLouzada Neto, FranciscoTomazella, Vera Lucia DamascenoMota, Alex Leal2022-06-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-13092022-102726/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-09-13T13:37:03Zoai:teses.usp.br:tde-13092022-102726Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-13T13:37:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modeling survival data based on a reparameterized weighted Lindley distribution
Modelagem de dados de sobrevivência baseada em uma distribuição de Lindley ponderada reparametrizada
title Modeling survival data based on a reparameterized weighted Lindley distribution
spellingShingle Modeling survival data based on a reparameterized weighted Lindley distribution
Mota, Alex Leal
Cure fraction
Distribuição de Lindley ponderada reparametrizada
Fração de cura
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Método da máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Non-proportional hazards
Reparameterized weighted Lindley distribution
Riscos não proporcionais
title_short Modeling survival data based on a reparameterized weighted Lindley distribution
title_full Modeling survival data based on a reparameterized weighted Lindley distribution
title_fullStr Modeling survival data based on a reparameterized weighted Lindley distribution
title_full_unstemmed Modeling survival data based on a reparameterized weighted Lindley distribution
title_sort Modeling survival data based on a reparameterized weighted Lindley distribution
author Mota, Alex Leal
author_facet Mota, Alex Leal
author_role author
dc.contributor.none.fl_str_mv Louzada Neto, Francisco
Tomazella, Vera Lucia Damasceno
dc.contributor.author.fl_str_mv Mota, Alex Leal
dc.subject.por.fl_str_mv Cure fraction
Distribuição de Lindley ponderada reparametrizada
Fração de cura
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Método da máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Non-proportional hazards
Reparameterized weighted Lindley distribution
Riscos não proporcionais
topic Cure fraction
Distribuição de Lindley ponderada reparametrizada
Fração de cura
Frailty model
Generalized time-dependent logistic model
Maximum likelihood method
Método da máxima verossimilhança
Modelo de fragilidade
Modelo logístico generalizado dependente do tempo
Non-proportional hazards
Reparameterized weighted Lindley distribution
Riscos não proporcionais
description In this work, we propose different statistical modeling for survival data based on a repara- meterized weighted Lindley distribution. Initially, we present this distribution and study its mathematical properties, maximum likelihood estimation, and numerical simulations. Then, we propose a novel frailty model by using the reparameterized weighted Lindley distribution for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard functions through the Laplace transform function of the frailty distribution. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the maximum likelihood method for estimating the resulting model parameters. Simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model where the frailties are described by reparameterized weighted Lindley distribution. An advantage of the proposed model is to jointly model the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We assume that the unknown number of competing causes that can influence the survival time follows a negative binomial distribution and that the time for the k-th competing cause to produce the event of interest follows the reparameterized weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the model are presented. The cure fraction is modeled by using the logit link function. Again, we use the maximum likelihood method under random right-censoring to estimate the proposed model parameters. Further, we present a Monte Carlo simulation study to verify the maximum likelihood estimators behavior assuming different sample sizes and censoring proportions. Finally, we extend the non-proportional generalized time-dependent logistic regression model by incorporating reparameterized weighted Lindley frailties. This proposed modeling has several important characteristics, such as non-proportional hazards, identifies the presence of long- term survivors without the addition of new parameters, captures the unobserved heterogeneity, allows the intersection of survival curves, and allows decreasing or unimodal hazard function. Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo simulation studies are conducted to evaluate the asymptotic properties of the estimators as well as some properties of the model. The potentiality of all the proposed models is analyzed by employing real datasets and model comparisons are performed.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13092022-102726/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13092022-102726/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256945376886784