Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados
Autor(a) principal: | |
---|---|
Data de Publicação: | 1981 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-174421/ |
Resumo: | O presente trabalho teve como objetivo principal justificar os fundamentos teóricos da análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados. O modelo matemático considerado foi: (ver tese) ou, admitindo-se que os efeitos de blocos incluem a média geral teórica e usando-se a forma matricial, Y= Xβ + ε Através do método dos quadrados mínimos, foram determinadas as estimativas dos efeitos dos parâmetros. A soma de quadrados de tratamentos, ajustada para blocos e regressão, foi obtida pelo método do resíduo condicional. Considerando-se o modelo de efeitos fixos, foram obtidas as esperanças matemáticas de todas as somas de quadrados. Demonstrou-se que a soma de quadrados do resíduo, ajustada para regressão, tem distribuição de qui-quadrado central, e que as demais têm distribuição de qui-quadrado não central. Mostrou-se que e correta a utilização do teste F para testarem-se as hipóteses de nulidade de que todos os efeitos de tratamentos e de que todos os coeficientes de regressão sejam iguais a zero. Foi obtida a matriz de dispersão dos vetores das estimativas: dos efeitos de tratamentos, ajustados para blocos; dos coeficientes de regressão; e dos efeitos de tratamentos, ajustados para blocos e regressão. Obteve-se, ainda, fórmula para a variância média da estimativa de um contraste entre duas médias de tratamentos, ajustadas para blocos e regressão. A aplicação de algumas fórmulas e procedimentos apresentados neste trabalho foi ilustrada através de um exemplo numérico, com duas variáveis auxiliares. |
id |
USP_9ee7e8ede5911733245be10d2c2ba8e5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210104-174421 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibradosIntrablock covariance analysis, with p e auxiliary variables, for balanced incomplete block designsANÁLISE DE COVARIÂNCIADELINEAMENTO EXPERIMENTALMODELOS MATEMÁTICOSO presente trabalho teve como objetivo principal justificar os fundamentos teóricos da análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados. O modelo matemático considerado foi: (ver tese) ou, admitindo-se que os efeitos de blocos incluem a média geral teórica e usando-se a forma matricial, Y= Xβ + ε Através do método dos quadrados mínimos, foram determinadas as estimativas dos efeitos dos parâmetros. A soma de quadrados de tratamentos, ajustada para blocos e regressão, foi obtida pelo método do resíduo condicional. Considerando-se o modelo de efeitos fixos, foram obtidas as esperanças matemáticas de todas as somas de quadrados. Demonstrou-se que a soma de quadrados do resíduo, ajustada para regressão, tem distribuição de qui-quadrado central, e que as demais têm distribuição de qui-quadrado não central. Mostrou-se que e correta a utilização do teste F para testarem-se as hipóteses de nulidade de que todos os efeitos de tratamentos e de que todos os coeficientes de regressão sejam iguais a zero. Foi obtida a matriz de dispersão dos vetores das estimativas: dos efeitos de tratamentos, ajustados para blocos; dos coeficientes de regressão; e dos efeitos de tratamentos, ajustados para blocos e regressão. Obteve-se, ainda, fórmula para a variância média da estimativa de um contraste entre duas médias de tratamentos, ajustadas para blocos e regressão. A aplicação de algumas fórmulas e procedimentos apresentados neste trabalho foi ilustrada através de um exemplo numérico, com duas variáveis auxiliares.This paper had in view mainly to justify the theoretical foundations of intrablock covariance analysis, with : p auxiliary variables, for balanced incomplete block designs. The mathematical model was: (ver tese) if we assume that the block effects include the mean m. ln matrix al gebra the model is: Y= Xβ + ε. Estimates of the parameters were obtained by the me- thod of least squares. The sum of squares for treatments,adjusted for blocks and regression, was obtained by the method of conditional residue. Assuming fixed effects in the model, the expectations of every type of sums of squares were calculated. It was proved that the error sum of squares, adjusted for regression, has a central chi-square distribution, while the other sums of squares have non-central chi-square distribution. It was pro-ved also that the use of the F distribution, to test null hypotheses that all treatment effects or all regression coefficients are zero, is correct. The author obtained the dispersion matrix for the vec tor of estimates of: treatment effects, adjusted for blocks; regres- sion coefficients; and treatment effects, adjusted for blocks and re gression. He obtained also a formula for the average variance of the estimate of a contrast between two treatment means, adjusted for blocks and regression. Use of some of the formulas and proceedings presented in the paper was examplified numerically, with two auxiliary variables.Biblioteca Digitais de Teses e Dissertações da USPBarbin, DecioDias, Jose Fernando Soares1981-03-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-174421/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-01-07T22:45:21Zoai:teses.usp.br:tde-20210104-174421Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-01-07T22:45:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados Intrablock covariance analysis, with p e auxiliary variables, for balanced incomplete block designs |
title |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
spellingShingle |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados Dias, Jose Fernando Soares ANÁLISE DE COVARIÂNCIA DELINEAMENTO EXPERIMENTAL MODELOS MATEMÁTICOS |
title_short |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
title_full |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
title_fullStr |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
title_full_unstemmed |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
title_sort |
Análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados |
author |
Dias, Jose Fernando Soares |
author_facet |
Dias, Jose Fernando Soares |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barbin, Decio |
dc.contributor.author.fl_str_mv |
Dias, Jose Fernando Soares |
dc.subject.none.fl_str_mv |
|
dc.subject.por.fl_str_mv |
ANÁLISE DE COVARIÂNCIA DELINEAMENTO EXPERIMENTAL MODELOS MATEMÁTICOS |
topic |
ANÁLISE DE COVARIÂNCIA DELINEAMENTO EXPERIMENTAL MODELOS MATEMÁTICOS |
description |
O presente trabalho teve como objetivo principal justificar os fundamentos teóricos da análise de covariância intrablocos, com p variáveis auxiliares, para delineamentos em blocos incompletos equilibrados. O modelo matemático considerado foi: (ver tese) ou, admitindo-se que os efeitos de blocos incluem a média geral teórica e usando-se a forma matricial, Y= Xβ + ε Através do método dos quadrados mínimos, foram determinadas as estimativas dos efeitos dos parâmetros. A soma de quadrados de tratamentos, ajustada para blocos e regressão, foi obtida pelo método do resíduo condicional. Considerando-se o modelo de efeitos fixos, foram obtidas as esperanças matemáticas de todas as somas de quadrados. Demonstrou-se que a soma de quadrados do resíduo, ajustada para regressão, tem distribuição de qui-quadrado central, e que as demais têm distribuição de qui-quadrado não central. Mostrou-se que e correta a utilização do teste F para testarem-se as hipóteses de nulidade de que todos os efeitos de tratamentos e de que todos os coeficientes de regressão sejam iguais a zero. Foi obtida a matriz de dispersão dos vetores das estimativas: dos efeitos de tratamentos, ajustados para blocos; dos coeficientes de regressão; e dos efeitos de tratamentos, ajustados para blocos e regressão. Obteve-se, ainda, fórmula para a variância média da estimativa de um contraste entre duas médias de tratamentos, ajustadas para blocos e regressão. A aplicação de algumas fórmulas e procedimentos apresentados neste trabalho foi ilustrada através de um exemplo numérico, com duas variáveis auxiliares. |
publishDate |
1981 |
dc.date.none.fl_str_mv |
1981-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-174421/ |
url |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-174421/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257204267155456 |