Processamento de informações em redes de neurônios sincronas
Autor(a) principal: | |
---|---|
Data de Publicação: | 1988 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/54/54131/tde-09042007-154549/ |
Resumo: | Vidros de spins são sistemas extremamente complexos caracterizados por um número enorme de estados estáveis e meta estáveis. Se identificarmos cada um desses estados com uma informação memorizada, esses sistemas podem ser utilizados como memórias associativas ou endereçáveis por conteúdo. O modelo de vidro de spins passa então a ser chamado de rede de neurônios. Neste trabalho estudamos a termodinâmica e alguns aspectos dinâmicos de uma rede de neurônios com processamento paralelo ou síncrono - o Modelo de Little de memória associativa - no regime em que o número de informações memorizadas p cresce como p = αN, onde N é o número de neurônios. Usando a teoria simétrica em relação às réplicas obtemos o diagrama de fases no espaço de parâmetros do modelo no qual incluímos um termo de autointeração dos neurônios.A riqueza do diagrama de fases que possui uma superfície de pontos tricríticos é devida à competição entre os dois regimes assintóticos da dinâmica síncrona: pontos fixos e ciclos de período dois. |
id |
USP_9f05e97306b86a65e387a210ba37ba3f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09042007-154549 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Processamento de informações em redes de neurônios sincronasInformation processing in synchronous neural networksAssociative memoryMecânica estatísticaMemória associativaNeural networksRedes neuraisSpin glassesStatistical mechanicsVidros de spinVidros de spins são sistemas extremamente complexos caracterizados por um número enorme de estados estáveis e meta estáveis. Se identificarmos cada um desses estados com uma informação memorizada, esses sistemas podem ser utilizados como memórias associativas ou endereçáveis por conteúdo. O modelo de vidro de spins passa então a ser chamado de rede de neurônios. Neste trabalho estudamos a termodinâmica e alguns aspectos dinâmicos de uma rede de neurônios com processamento paralelo ou síncrono - o Modelo de Little de memória associativa - no regime em que o número de informações memorizadas p cresce como p = αN, onde N é o número de neurônios. Usando a teoria simétrica em relação às réplicas obtemos o diagrama de fases no espaço de parâmetros do modelo no qual incluímos um termo de autointeração dos neurônios.A riqueza do diagrama de fases que possui uma superfície de pontos tricríticos é devida à competição entre os dois regimes assintóticos da dinâmica síncrona: pontos fixos e ciclos de período dois.Spin glasses are very complex systems characterized by a huge number of stable and metastable states. If we identify each state with a memorized information then spin glasses may be used as associative or content addressable memories. This spin glass model is then called a neural network. In this work we study the thermodynamics and some dynamical aspects of a neural network with parallel or synchronous processing - Little\'s model of associative memory -in the regime where the number of memorized informations p grows as p = αN, where N is the number of neurons. Using the replica symmetric theory we determine the phase diagram in the space of the model\'s parameters, in which we include a neural self interaction term. The richness of the phase diagram which possesses a surface of tricritical points is due to the competition between the two asymptotic dynamical behaviours of the synchronous dynamics: fixed points and cycles of lenght two.Biblioteca Digitais de Teses e Dissertações da USPKoberle, RolandFontanari, Jose Fernando1988-05-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/54/54131/tde-09042007-154549/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-09042007-154549Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Processamento de informações em redes de neurônios sincronas Information processing in synchronous neural networks |
title |
Processamento de informações em redes de neurônios sincronas |
spellingShingle |
Processamento de informações em redes de neurônios sincronas Fontanari, Jose Fernando Associative memory Mecânica estatística Memória associativa Neural networks Redes neurais Spin glasses Statistical mechanics Vidros de spin |
title_short |
Processamento de informações em redes de neurônios sincronas |
title_full |
Processamento de informações em redes de neurônios sincronas |
title_fullStr |
Processamento de informações em redes de neurônios sincronas |
title_full_unstemmed |
Processamento de informações em redes de neurônios sincronas |
title_sort |
Processamento de informações em redes de neurônios sincronas |
author |
Fontanari, Jose Fernando |
author_facet |
Fontanari, Jose Fernando |
author_role |
author |
dc.contributor.none.fl_str_mv |
Koberle, Roland |
dc.contributor.author.fl_str_mv |
Fontanari, Jose Fernando |
dc.subject.por.fl_str_mv |
Associative memory Mecânica estatística Memória associativa Neural networks Redes neurais Spin glasses Statistical mechanics Vidros de spin |
topic |
Associative memory Mecânica estatística Memória associativa Neural networks Redes neurais Spin glasses Statistical mechanics Vidros de spin |
description |
Vidros de spins são sistemas extremamente complexos caracterizados por um número enorme de estados estáveis e meta estáveis. Se identificarmos cada um desses estados com uma informação memorizada, esses sistemas podem ser utilizados como memórias associativas ou endereçáveis por conteúdo. O modelo de vidro de spins passa então a ser chamado de rede de neurônios. Neste trabalho estudamos a termodinâmica e alguns aspectos dinâmicos de uma rede de neurônios com processamento paralelo ou síncrono - o Modelo de Little de memória associativa - no regime em que o número de informações memorizadas p cresce como p = αN, onde N é o número de neurônios. Usando a teoria simétrica em relação às réplicas obtemos o diagrama de fases no espaço de parâmetros do modelo no qual incluímos um termo de autointeração dos neurônios.A riqueza do diagrama de fases que possui uma superfície de pontos tricríticos é devida à competição entre os dois regimes assintóticos da dinâmica síncrona: pontos fixos e ciclos de período dois. |
publishDate |
1988 |
dc.date.none.fl_str_mv |
1988-05-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/54/54131/tde-09042007-154549/ |
url |
http://www.teses.usp.br/teses/disponiveis/54/54131/tde-09042007-154549/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256827992997888 |