Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03022016-161317/ |
Resumo: | Devido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF. |
id |
USP_9f233b7f00d9927b0a6e0c3f0f45999f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03022016-161317 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradienteEdge segmentation in medical images using the recursive gradient vector flow deformable contoursContornos deformáveisDeformable contoursDeformable modelsFluxo do vetor gradienteGradient vector flowImage processingImagens médicasMedical imagingModelos deformáveisProcessamento de imagensDevido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF.Due to the variation of the quality and noise in medical images, the classic image segmentation techniques are usually ineffective. In this work, we present a new algorithm that is composed of two techniques: the gradient vector flow deformable contours (GVF) and the scale-space technique using a diffusion process. A bibliographical revision of the models that work with deformable contours was accomplished, they were classified in parametric and geometric models. Among the parametric models the gradient vector flow deformable contours (GVF) was chosen. This approach offers precision in the representation of biological structures where other models does not. Thus, the algorithm improves the edge map to guide the deformation using recursive operations. With this estimation based on the behavior of the scale-space techniques it is realized, the localization and correction of sub-areas of the edge map that disturb the deformation. On the other hand, it was incorporated a new characteristic that allows the algorithm to accomplish classification activities. That is, the algorithm determines the presence or absence of a target object using a minimal deformation area. Our method was validated on both, simulated images and medical images making a comparison with the traditional GVF deformable contours.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonLlapa Rodríguez, Eduardo Rafael2005-07-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-03022016-161317/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T19:45:53Zoai:teses.usp.br:tde-03022016-161317Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T19:45:53Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente Edge segmentation in medical images using the recursive gradient vector flow deformable contours |
title |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
spellingShingle |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente Llapa Rodríguez, Eduardo Rafael Contornos deformáveis Deformable contours Deformable models Fluxo do vetor gradiente Gradient vector flow Image processing Imagens médicas Medical imaging Modelos deformáveis Processamento de imagens |
title_short |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
title_full |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
title_fullStr |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
title_full_unstemmed |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
title_sort |
Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente |
author |
Llapa Rodríguez, Eduardo Rafael |
author_facet |
Llapa Rodríguez, Eduardo Rafael |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonzaga, Adilson |
dc.contributor.author.fl_str_mv |
Llapa Rodríguez, Eduardo Rafael |
dc.subject.por.fl_str_mv |
Contornos deformáveis Deformable contours Deformable models Fluxo do vetor gradiente Gradient vector flow Image processing Imagens médicas Medical imaging Modelos deformáveis Processamento de imagens |
topic |
Contornos deformáveis Deformable contours Deformable models Fluxo do vetor gradiente Gradient vector flow Image processing Imagens médicas Medical imaging Modelos deformáveis Processamento de imagens |
description |
Devido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-07-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03022016-161317/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03022016-161317/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256628531822592 |