Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18163/tde-19122022-145816/ |
Resumo: | Additive manufacturing (AM) or 3D printing is a set of technologies that fabricate parts by successively adding layers. This technique is already applied in all classes of materials. In ceramic manufacturing, AM allows the fabrication of small series components with greater geometric freedom, lower cost, and reduced delivery time. Among the AM technologies, vat photopolymerization (VP) stands out for its ability to produce ceramic pieces with excellent dimensional accuracy and surface finish. However, there is a shortage of VP commercial equipment dedicated to producing ceramics at an affordable price, given the challenges of dealing with raw material with high particle loading. In this work, which approaches the fabrication of advanced ceramics by digital light processing VP, the feasibility of using a top- down 3D printer prototype and an ordinary commercial bottom-up printer (usually applied in polymer 3D printing) in the processing of ceramic materials was tested. For this, a 3D printer prototype was designed and built, creating an innovative recoating system (patent pending), composed of two blades with distinct and sequential functions. This system aims to overcome the challenge of creating layers for ceramic suspensions, which usually have high viscosity. In addition, photosensitive suspensions were developed seeking to meet process requirements related to high ceramic loading, rheological behavior, photosensitive parameters, and stability. The ceramic powders were selected to evaluate the process using distinct groups of advanced ceramics: nanometric powders (3Y-TZP) and submicrometric powders (electrofused mullite). Furthermore, a combination of natural raw material (zircon) with alumina was used to investigate the in-situ formation of mullite-zirconia composites in 3D printed parts. Thus, photosensitive ceramic suspensions based on a nanometric zirconia powder (3Y-TZP) were developed and characterized, selecting the appropriate components (monomer, photoinitiator, and dispersant). In this way, a ceramic slurry was obtained capable of validating the developed prototype and manufacturing green ceramic bodies. Nonetheless, the same formulation was not suitable for the commercial 3D printer, due to its rheological behavior not being compatible with the equipment. On the other hand, the submicrometric mullite powder allowed the preparation of formulations with high solid loading (up to 50 vol%). These new formulations were successfully used in both pieces of equipment tested. Furthermore, the formulation based on the mixture of ceramic powders (zircon and alumina) showed that the technique can be combined with reactive sintering to create in-situ mullite and zirconia composites. After analysis of the thermal decomposition, a protocol for the thermal treatment was created and the printed bodies were submitted to burning of the organic components and sintering. Both 3D printers tested proved capable of creating dense ceramic pieces (>95%) and with geometries that would be unfeasible or even impossible by other manufacturing methods. The various characterizations of the sintered bodies (mechanical strength, microstructure, etc.) indicate that there are still limitations when the present route is compared with conventional manufacturing processes. Finally, it is believed that the present study contributes to the knowledge related to the additive manufacturing of ceramics and stands out for presenting an approach accessible to laboratories and small manufacturers of ceramic products. |
id |
USP_a17045eb38658643381ed3ec20f497ca |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19122022-145816 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printingManufatura aditiva de cerâmicas avançadas por fotopolimerização por projeção: equipamento, barbotina e impressão 3D3D printingAdditive manufacturingCerâmicaCeramicsDigital light processingFotopolimerização em cubaFotopolimerização por projeçãoImpressão 3DManufatura aditivaVat photopolymerizationAdditive manufacturing (AM) or 3D printing is a set of technologies that fabricate parts by successively adding layers. This technique is already applied in all classes of materials. In ceramic manufacturing, AM allows the fabrication of small series components with greater geometric freedom, lower cost, and reduced delivery time. Among the AM technologies, vat photopolymerization (VP) stands out for its ability to produce ceramic pieces with excellent dimensional accuracy and surface finish. However, there is a shortage of VP commercial equipment dedicated to producing ceramics at an affordable price, given the challenges of dealing with raw material with high particle loading. In this work, which approaches the fabrication of advanced ceramics by digital light processing VP, the feasibility of using a top- down 3D printer prototype and an ordinary commercial bottom-up printer (usually applied in polymer 3D printing) in the processing of ceramic materials was tested. For this, a 3D printer prototype was designed and built, creating an innovative recoating system (patent pending), composed of two blades with distinct and sequential functions. This system aims to overcome the challenge of creating layers for ceramic suspensions, which usually have high viscosity. In addition, photosensitive suspensions were developed seeking to meet process requirements related to high ceramic loading, rheological behavior, photosensitive parameters, and stability. The ceramic powders were selected to evaluate the process using distinct groups of advanced ceramics: nanometric powders (3Y-TZP) and submicrometric powders (electrofused mullite). Furthermore, a combination of natural raw material (zircon) with alumina was used to investigate the in-situ formation of mullite-zirconia composites in 3D printed parts. Thus, photosensitive ceramic suspensions based on a nanometric zirconia powder (3Y-TZP) were developed and characterized, selecting the appropriate components (monomer, photoinitiator, and dispersant). In this way, a ceramic slurry was obtained capable of validating the developed prototype and manufacturing green ceramic bodies. Nonetheless, the same formulation was not suitable for the commercial 3D printer, due to its rheological behavior not being compatible with the equipment. On the other hand, the submicrometric mullite powder allowed the preparation of formulations with high solid loading (up to 50 vol%). These new formulations were successfully used in both pieces of equipment tested. Furthermore, the formulation based on the mixture of ceramic powders (zircon and alumina) showed that the technique can be combined with reactive sintering to create in-situ mullite and zirconia composites. After analysis of the thermal decomposition, a protocol for the thermal treatment was created and the printed bodies were submitted to burning of the organic components and sintering. Both 3D printers tested proved capable of creating dense ceramic pieces (>95%) and with geometries that would be unfeasible or even impossible by other manufacturing methods. The various characterizations of the sintered bodies (mechanical strength, microstructure, etc.) indicate that there are still limitations when the present route is compared with conventional manufacturing processes. Finally, it is believed that the present study contributes to the knowledge related to the additive manufacturing of ceramics and stands out for presenting an approach accessible to laboratories and small manufacturers of ceramic products.A manufatura aditiva (MA) ou impressão 3D é um conjunto de tecnologias que fabrica corpos pela adição sucessiva de camadas. Tal técnica já é aplicada em todas as classes de materiais. Na fabricação cerâmica, a MA permite a produção de corpos em pequena escala, com maior liberdade de forma, menor custo e prazo de entrega reduzido. Dentre as tecnologias de MA, a fotopolimerização em cuba se destaca pela capacidade de produzir peças cerâmicas com excelente precisão dimensional e acabamento superficial. Contudo, existe uma escassez de equipamentos comerciais destinados a produzir cerâmica, baseados nessa tecnologia e com preço acessível, visto os desafios de lidar com a matéria-prima com alto carregamento de partículas. Neste trabalho, que aborda a fabricação de cerâmica avançada por fotopolimerização por projeção, foi testada a viabilidade do uso de um protótipo de impressora 3D top-down e de uma impressora comercial bottom-up comum (usualmente empregada na impressão 3D de polímeros) no processamento de materiais cerâmicos. Para isso, um protótipo de impressora 3D foi projetado e construído, criando-se um sistema de recobrimento inovador (patente depositada), composto por duas lâminas com funções distintas e sequenciais. Esse sistema visa superar o desafio de criação de camadas para as suspensões cerâmicas, que usualmente apresentam alta viscosidade. Além disso, suspensões fotopolimerizáveis foram desenvolvidas buscando atender os requisitos do processo relacionados ao alto carregamento cerâmico, comportamento reológico, parâmetros fotossensíveis e estabilidade. Os pós cerâmicos foram selecionados para avaliar o processo usando grupos distintos de cerâmica avançada: pó nanométrico (3Y-TZP) e pó submicrométrico (mulita eletrofundida). Além disso, a combinação de matéria-prima natural (zirconita) com alumina foi usada para investigar a formação in situ de compósitos mulita-zircônia em peças impressas. Assim, suspensões fotopolimerizáveis cerâmicas baseadas em um pó nanométrico de zircônia (3Y-TZP) foram desenvolvidas e caracterizadas, selecionando-se os componentes (monômero, fotoiniciador e dispersante) apropriados. Desta forma, obteve-se uma barbotina cerâmica capaz de validar o protótipo desenvolvido e fabricar corpos cerâmicos verdes. Contudo, a mesma formulação não foi adequada na impressora 3D comercial, devido ao seu comportamento reológico não ser compatível com o equipamento. Por sua vez, o pó submicrométrico de mulita permitiu o preparo de formulações com alto carregamento sólido (até 50 %v/v). Essas novas formulações foram usadas com sucesso nos dois equipamentos testados. Ainda, a formulação baseada na mistura de pós cerâmicos (zirconita e alumina) mostrou que a técnica pode ser combinada com sinterização reativa para criar compósitos in situ de mulita e zircônia. Após análise da decomposição térmica, um protocolo para o tratamento térmico foi criado e os corpos impressos foram submetidos à queima dos componentes orgânicos e sinterização. Ambos os equipamentos testados se mostraram capazes de criar peças cerâmicas densas (>95%) e com geometrias que seriam inviáveis ou até mesmo impossíveis por outros métodos de fabricação. As diversas caracterizações dos corpos sinterizados (resistência mecânica, microestrutura, etc.) indicam que ainda existem limitações quando a presente rota é comparada com os processos convencionais de fabricação. Por fim, acredita-se que o presente estudo contribui para o conhecimento relacionado à manufatura aditiva de cerâmicas e destaca-se por apresentar uma abordagem acessível aos laboratórios e pequenos fabricantes de produtos cerâmicos.Biblioteca Digitais de Teses e Dissertações da USPFortulan, Carlos AlbertoCamargo, Ítalo Leite de2022-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18163/tde-19122022-145816/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-12-20T18:39:46Zoai:teses.usp.br:tde-19122022-145816Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-20T18:39:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing Manufatura aditiva de cerâmicas avançadas por fotopolimerização por projeção: equipamento, barbotina e impressão 3D |
title |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
spellingShingle |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing Camargo, Ítalo Leite de 3D printing Additive manufacturing Cerâmica Ceramics Digital light processing Fotopolimerização em cuba Fotopolimerização por projeção Impressão 3D Manufatura aditiva Vat photopolymerization |
title_short |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
title_full |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
title_fullStr |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
title_full_unstemmed |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
title_sort |
Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing |
author |
Camargo, Ítalo Leite de |
author_facet |
Camargo, Ítalo Leite de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fortulan, Carlos Alberto |
dc.contributor.author.fl_str_mv |
Camargo, Ítalo Leite de |
dc.subject.por.fl_str_mv |
3D printing Additive manufacturing Cerâmica Ceramics Digital light processing Fotopolimerização em cuba Fotopolimerização por projeção Impressão 3D Manufatura aditiva Vat photopolymerization |
topic |
3D printing Additive manufacturing Cerâmica Ceramics Digital light processing Fotopolimerização em cuba Fotopolimerização por projeção Impressão 3D Manufatura aditiva Vat photopolymerization |
description |
Additive manufacturing (AM) or 3D printing is a set of technologies that fabricate parts by successively adding layers. This technique is already applied in all classes of materials. In ceramic manufacturing, AM allows the fabrication of small series components with greater geometric freedom, lower cost, and reduced delivery time. Among the AM technologies, vat photopolymerization (VP) stands out for its ability to produce ceramic pieces with excellent dimensional accuracy and surface finish. However, there is a shortage of VP commercial equipment dedicated to producing ceramics at an affordable price, given the challenges of dealing with raw material with high particle loading. In this work, which approaches the fabrication of advanced ceramics by digital light processing VP, the feasibility of using a top- down 3D printer prototype and an ordinary commercial bottom-up printer (usually applied in polymer 3D printing) in the processing of ceramic materials was tested. For this, a 3D printer prototype was designed and built, creating an innovative recoating system (patent pending), composed of two blades with distinct and sequential functions. This system aims to overcome the challenge of creating layers for ceramic suspensions, which usually have high viscosity. In addition, photosensitive suspensions were developed seeking to meet process requirements related to high ceramic loading, rheological behavior, photosensitive parameters, and stability. The ceramic powders were selected to evaluate the process using distinct groups of advanced ceramics: nanometric powders (3Y-TZP) and submicrometric powders (electrofused mullite). Furthermore, a combination of natural raw material (zircon) with alumina was used to investigate the in-situ formation of mullite-zirconia composites in 3D printed parts. Thus, photosensitive ceramic suspensions based on a nanometric zirconia powder (3Y-TZP) were developed and characterized, selecting the appropriate components (monomer, photoinitiator, and dispersant). In this way, a ceramic slurry was obtained capable of validating the developed prototype and manufacturing green ceramic bodies. Nonetheless, the same formulation was not suitable for the commercial 3D printer, due to its rheological behavior not being compatible with the equipment. On the other hand, the submicrometric mullite powder allowed the preparation of formulations with high solid loading (up to 50 vol%). These new formulations were successfully used in both pieces of equipment tested. Furthermore, the formulation based on the mixture of ceramic powders (zircon and alumina) showed that the technique can be combined with reactive sintering to create in-situ mullite and zirconia composites. After analysis of the thermal decomposition, a protocol for the thermal treatment was created and the printed bodies were submitted to burning of the organic components and sintering. Both 3D printers tested proved capable of creating dense ceramic pieces (>95%) and with geometries that would be unfeasible or even impossible by other manufacturing methods. The various characterizations of the sintered bodies (mechanical strength, microstructure, etc.) indicate that there are still limitations when the present route is compared with conventional manufacturing processes. Finally, it is believed that the present study contributes to the knowledge related to the additive manufacturing of ceramics and stands out for presenting an approach accessible to laboratories and small manufacturers of ceramic products. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18163/tde-19122022-145816/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18163/tde-19122022-145816/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257140400488448 |