As formas bilineares no estudo das representações de posets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02112023-165025/ |
Resumo: | Um dos maiores propósitos da teoria de representações de álgebras é descrever (da melhor forma possível) todas as representações indecomponíveis (a menos de isomorfismos) de uma dada álgebra. Com as representações matriciais de posets, conseguimos trabalhar este problema no âmbito de matrizes, utilizando classes de equivalência determinadas por algumas operações elementares que dependem do poset e de um vetor dimensão dado. Neste trabalho, utilizamos as representações subespaciais de posets, que são suficientemente equivalentes às matriciais para todos os nossos propósitos. No nosso primeiro resultado, calculamos a dimensão da variedade das representações por subespaços de um dado poset S com um vetor dimensão fixado, mostrando que ela é dada pela forma quadrática de Euler associada a S. No segundo resultado, relacionamos a matriz de Cartan (que, por sua vez, se relaciona à forma quadrática de Euler) de um poset à matriz de Cartan de seu poset diferencial. Então, usamos esta relação para compreender alguns aspectos quanto à estabilidade de representações de um poset dado. A estabilidade de representações constitui uma abordagem geométrica do estudo da classificação de representações indecomponíveis em posets onde elas não são bem comportadas (\"tipo selvagem\"). Particularmente, estudamos as condições necessárias para a conservação da estabilidade após a diferenciação de uma representação. Como corolário do segundo e terceiro resultados, conseguimos mostrar que todas as representações schurianas de um poset dado são estáveis para uma forma que calculamos explicitamente. |
id |
USP_a177af36d22b214d9f5c4b42b6339f4d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02112023-165025 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
As formas bilineares no estudo das representações de posetsBilinear forms into poset representationBilinear formsDiferenciação e integração de representações de posetsDifferentiation and integration of poset representationFormas bilinearesPoset representationRepresentações de posetsUm dos maiores propósitos da teoria de representações de álgebras é descrever (da melhor forma possível) todas as representações indecomponíveis (a menos de isomorfismos) de uma dada álgebra. Com as representações matriciais de posets, conseguimos trabalhar este problema no âmbito de matrizes, utilizando classes de equivalência determinadas por algumas operações elementares que dependem do poset e de um vetor dimensão dado. Neste trabalho, utilizamos as representações subespaciais de posets, que são suficientemente equivalentes às matriciais para todos os nossos propósitos. No nosso primeiro resultado, calculamos a dimensão da variedade das representações por subespaços de um dado poset S com um vetor dimensão fixado, mostrando que ela é dada pela forma quadrática de Euler associada a S. No segundo resultado, relacionamos a matriz de Cartan (que, por sua vez, se relaciona à forma quadrática de Euler) de um poset à matriz de Cartan de seu poset diferencial. Então, usamos esta relação para compreender alguns aspectos quanto à estabilidade de representações de um poset dado. A estabilidade de representações constitui uma abordagem geométrica do estudo da classificação de representações indecomponíveis em posets onde elas não são bem comportadas (\"tipo selvagem\"). Particularmente, estudamos as condições necessárias para a conservação da estabilidade após a diferenciação de uma representação. Como corolário do segundo e terceiro resultados, conseguimos mostrar que todas as representações schurianas de um poset dado são estáveis para uma forma que calculamos explicitamente.One of the main purposes of theory of algebra representations is to describe (as best as possible) all the indecomposable representations (up to isomorphisms) of a given algebra. With matrix representations of posets, we can tackle this problem in the context of matrices, using equivalence classes determined by some elementary operations that depend on the poset and a given dimension vector. In this work, we use subspace representations of posets, which are sufficiently equivalent to matrix representations for our purposes. In our first result, we calculate the dimension of the variety of subspace representations of a given poset S with a fixed dimension vector, and find its relation with the Euler quadratic form associated with S. In the second result, we relate the Cartan matrix of a poset (which, in its turn, generates the Euler form) to the Cartan matrix of its differential poset. We then use this relation to understand some aspects of the stability of representations of a given poset. The stability of a representation constitutes a geometric approach to the study of the classification of indecomposable representations in posets where they are not well-behaved (\"wild type\"). In particular, we study the necessary conditions for conservation of stability through differentiation of a representation. As a corollary of the second and third results, we are able to show that any schurian representation of a specific poset are stable to a form that we compute explicitly.Biblioteca Digitais de Teses e Dissertações da USPIusenko, KostiantynFonseca, Claudia Cavalcante2023-10-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-02112023-165025/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-11-13T18:57:02Zoai:teses.usp.br:tde-02112023-165025Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-11-13T18:57:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
As formas bilineares no estudo das representações de posets Bilinear forms into poset representation |
title |
As formas bilineares no estudo das representações de posets |
spellingShingle |
As formas bilineares no estudo das representações de posets Fonseca, Claudia Cavalcante Bilinear forms Diferenciação e integração de representações de posets Differentiation and integration of poset representation Formas bilineares Poset representation Representações de posets |
title_short |
As formas bilineares no estudo das representações de posets |
title_full |
As formas bilineares no estudo das representações de posets |
title_fullStr |
As formas bilineares no estudo das representações de posets |
title_full_unstemmed |
As formas bilineares no estudo das representações de posets |
title_sort |
As formas bilineares no estudo das representações de posets |
author |
Fonseca, Claudia Cavalcante |
author_facet |
Fonseca, Claudia Cavalcante |
author_role |
author |
dc.contributor.none.fl_str_mv |
Iusenko, Kostiantyn |
dc.contributor.author.fl_str_mv |
Fonseca, Claudia Cavalcante |
dc.subject.por.fl_str_mv |
Bilinear forms Diferenciação e integração de representações de posets Differentiation and integration of poset representation Formas bilineares Poset representation Representações de posets |
topic |
Bilinear forms Diferenciação e integração de representações de posets Differentiation and integration of poset representation Formas bilineares Poset representation Representações de posets |
description |
Um dos maiores propósitos da teoria de representações de álgebras é descrever (da melhor forma possível) todas as representações indecomponíveis (a menos de isomorfismos) de uma dada álgebra. Com as representações matriciais de posets, conseguimos trabalhar este problema no âmbito de matrizes, utilizando classes de equivalência determinadas por algumas operações elementares que dependem do poset e de um vetor dimensão dado. Neste trabalho, utilizamos as representações subespaciais de posets, que são suficientemente equivalentes às matriciais para todos os nossos propósitos. No nosso primeiro resultado, calculamos a dimensão da variedade das representações por subespaços de um dado poset S com um vetor dimensão fixado, mostrando que ela é dada pela forma quadrática de Euler associada a S. No segundo resultado, relacionamos a matriz de Cartan (que, por sua vez, se relaciona à forma quadrática de Euler) de um poset à matriz de Cartan de seu poset diferencial. Então, usamos esta relação para compreender alguns aspectos quanto à estabilidade de representações de um poset dado. A estabilidade de representações constitui uma abordagem geométrica do estudo da classificação de representações indecomponíveis em posets onde elas não são bem comportadas (\"tipo selvagem\"). Particularmente, estudamos as condições necessárias para a conservação da estabilidade após a diferenciação de uma representação. Como corolário do segundo e terceiro resultados, conseguimos mostrar que todas as representações schurianas de um poset dado são estáveis para uma forma que calculamos explicitamente. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02112023-165025/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02112023-165025/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256621768507392 |