Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3143/tde-24092018-073910/ |
Resumo: | Nos dias atuais, há muitos casos em que sistemas de potência estão operando perto dos seus limites de estabilidade devido a restrições econômicas e leis ambientais. A estabilidade de tensão é uma matéria de muita pesquisa e interesse devido a que é considerado como uma das maiores ameaças na segurança dos sistemas. Uma prevenção exitosa de colapso do sistema baseia-se na precisão do método, a simplicidade dos índices, e muito baixo tempo de computação. Este trabalho apresenta uma rede Perceptron Multicamada (PMC) como proposta para monitoramento em tempo real da estabilidade de tensão de sistemas de potência usando como principais dados de entrada medidas obtidas do sistema SCADA. Os dados de treinamento são obtidos com cálculos de fluxo de potência continuado. A rede Perceptron Multicamadas é apresentada como um aproximador universal de funções, que diminui o tempo computacional dos métodos convencionais como o fluxo de potência continuado. Por fim, a topologia da rede PMC proposta é avaliada com o sistema de 30 barras do IEEE, e os resultados em relação ao tempo de computação e precisão são comparados com o método de fluxo de potência continuado. |
id |
USP_a192d5e60c50e4ce891f1d1a4ef5d95e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24092018-073910 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais.Real time monitoring of voltage stability with artificial neural netrworks.Artificial neural networkContinuation power flowEstabilidade de sistemasOnline monitoringRedes neuraisSistemas elétricos de potênciaVoltage stabilityNos dias atuais, há muitos casos em que sistemas de potência estão operando perto dos seus limites de estabilidade devido a restrições econômicas e leis ambientais. A estabilidade de tensão é uma matéria de muita pesquisa e interesse devido a que é considerado como uma das maiores ameaças na segurança dos sistemas. Uma prevenção exitosa de colapso do sistema baseia-se na precisão do método, a simplicidade dos índices, e muito baixo tempo de computação. Este trabalho apresenta uma rede Perceptron Multicamada (PMC) como proposta para monitoramento em tempo real da estabilidade de tensão de sistemas de potência usando como principais dados de entrada medidas obtidas do sistema SCADA. Os dados de treinamento são obtidos com cálculos de fluxo de potência continuado. A rede Perceptron Multicamadas é apresentada como um aproximador universal de funções, que diminui o tempo computacional dos métodos convencionais como o fluxo de potência continuado. Por fim, a topologia da rede PMC proposta é avaliada com o sistema de 30 barras do IEEE, e os resultados em relação ao tempo de computação e precisão são comparados com o método de fluxo de potência continuado.Nowadays, many power systems are operating near their limits of stability due to economic restrictions and environmental laws. Voltage stability is a subject of great interest because it is considered one of the greatest threats for power systems security. The keys to preventing blackouts are the accuracy of the method, speed indication, and low computation time. This work presents a Multi-layer Perceptron (PMC) network as a proposal for real-time monitoring of voltage stability in power systems using input data obtained from the SCADA system. The training data are obtained by running Continuation Power Flow (CPF) routine. The multi-layer Perceptron network is presented as a universal approximator, reducing the computation time of conventional methods such as the Finally, the proposed PMC network is evaluated in the IEEE 30-bus system. Computation time and accuracy are compared with the continuation power flow method.Biblioteca Digitais de Teses e Dissertações da USPPereira, Carlos Eduardo de MoraisPaz Salazar, Pablo Daniel 2018-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-24092018-073910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-10-03T01:45:28Zoai:teses.usp.br:tde-24092018-073910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. Real time monitoring of voltage stability with artificial neural netrworks. |
title |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
spellingShingle |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. Paz Salazar, Pablo Daniel Artificial neural network Continuation power flow Estabilidade de sistemas Online monitoring Redes neurais Sistemas elétricos de potência Voltage stability |
title_short |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
title_full |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
title_fullStr |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
title_full_unstemmed |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
title_sort |
Monitoramento em tempo real da estabilidade de tensão usando redes neurais artificiais. |
author |
Paz Salazar, Pablo Daniel |
author_facet |
Paz Salazar, Pablo Daniel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Carlos Eduardo de Morais |
dc.contributor.author.fl_str_mv |
Paz Salazar, Pablo Daniel |
dc.subject.por.fl_str_mv |
Artificial neural network Continuation power flow Estabilidade de sistemas Online monitoring Redes neurais Sistemas elétricos de potência Voltage stability |
topic |
Artificial neural network Continuation power flow Estabilidade de sistemas Online monitoring Redes neurais Sistemas elétricos de potência Voltage stability |
description |
Nos dias atuais, há muitos casos em que sistemas de potência estão operando perto dos seus limites de estabilidade devido a restrições econômicas e leis ambientais. A estabilidade de tensão é uma matéria de muita pesquisa e interesse devido a que é considerado como uma das maiores ameaças na segurança dos sistemas. Uma prevenção exitosa de colapso do sistema baseia-se na precisão do método, a simplicidade dos índices, e muito baixo tempo de computação. Este trabalho apresenta uma rede Perceptron Multicamada (PMC) como proposta para monitoramento em tempo real da estabilidade de tensão de sistemas de potência usando como principais dados de entrada medidas obtidas do sistema SCADA. Os dados de treinamento são obtidos com cálculos de fluxo de potência continuado. A rede Perceptron Multicamadas é apresentada como um aproximador universal de funções, que diminui o tempo computacional dos métodos convencionais como o fluxo de potência continuado. Por fim, a topologia da rede PMC proposta é avaliada com o sistema de 30 barras do IEEE, e os resultados em relação ao tempo de computação e precisão são comparados com o método de fluxo de potência continuado. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-24092018-073910/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-24092018-073910/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257313853833216 |