Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno

Detalhes bibliográficos
Autor(a) principal: Andrade, Heider de Castro e
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27042017-093540/
Resumo: Este trabalho apresenta um modelo numérico para a análise da propagação de fissuras em estruturas bidimensionais não-homogêneas. O comportamento mecânico é simulado a partir da formulação elastostática do Método dos Elementos de Contorno (MEC) aplicada a materiais isotrópicos. O MEC é uma eficiente e robusta técnica numérica para análises de propagação de fissuras. A não exigência de uma malha de domínio pelo método permite uma representação precisa da concentração de tensão nas pontas. Além disso, a redução da dimensionalidade proporcionada pelo MEC facilita o processo de remalhamento durante o crescimento das fissuras. A formulação dual do MEC é adotada, na qual as equações integrais singular e hipersingular são aplicadas. A modelagem de domínios não-homogêneos é realizada a partir da técnica de sub-regiões. A Mecânica da Fratura Elástico-Linear (MFEL) é aplicada para a análise da fratura em materiais frágeis. Os fatores de intensidade de tensão são determinados a partir da integral-J e a teoria da máxima tensão circunferencial é adotada para definir a direção de propagação das fissuras e o fator de intensidade de tensão equivalente. Problemas envolvendo fraturamento hidráulico também são investigados a partir da aplicação da MFEL. A integral-J é modificada para a consideração da pressão hidrostática atuante sobre as faces da fissura. Estruturas sujeitas à fadiga de alto ciclo também são avaliadas. A lei de Paris é utilizada para a estimativa da taxa de crescimento das fissuras. O último tipo de problema considerado é a fratura em materiais quase-frágeis. O modelo de fissura coesiva é empregado para a representação do comportamento não-linear físico próximo à ponta. O sistema de equações não-linear obtido é resolvido a partir de um algoritmo iterativo denominado operador constante. O estado de tensão na ponta, determinado por extrapolação, é utilizado para a verificação da estabilidade à propagação e o caminho de crescimento é definido a partir da formulação da MFEL. São observadas boas correspondências entre os resultados obtidos e as respostas encontradas na literatura, indicando a eficiência e a robustez do código computacional proposto. Melhorias do modelo numérico implementado também são discutidas.
id USP_a242f1b0cc30f2890941b69783689b28
oai_identifier_str oai:teses.usp.br:tde-27042017-093540
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de ContornoCrack propagation analysis in non-homogeneous two-dimensional structures using the Boundary Element MethodBoundary Element MethodDomínios não-homogêneosFracture mechanicsMecânica da fraturaMétodo dos Elementos de ContornoMultiple crack propagationNon-homogeneous domainsPropagação de múltiplas fissurasEste trabalho apresenta um modelo numérico para a análise da propagação de fissuras em estruturas bidimensionais não-homogêneas. O comportamento mecânico é simulado a partir da formulação elastostática do Método dos Elementos de Contorno (MEC) aplicada a materiais isotrópicos. O MEC é uma eficiente e robusta técnica numérica para análises de propagação de fissuras. A não exigência de uma malha de domínio pelo método permite uma representação precisa da concentração de tensão nas pontas. Além disso, a redução da dimensionalidade proporcionada pelo MEC facilita o processo de remalhamento durante o crescimento das fissuras. A formulação dual do MEC é adotada, na qual as equações integrais singular e hipersingular são aplicadas. A modelagem de domínios não-homogêneos é realizada a partir da técnica de sub-regiões. A Mecânica da Fratura Elástico-Linear (MFEL) é aplicada para a análise da fratura em materiais frágeis. Os fatores de intensidade de tensão são determinados a partir da integral-J e a teoria da máxima tensão circunferencial é adotada para definir a direção de propagação das fissuras e o fator de intensidade de tensão equivalente. Problemas envolvendo fraturamento hidráulico também são investigados a partir da aplicação da MFEL. A integral-J é modificada para a consideração da pressão hidrostática atuante sobre as faces da fissura. Estruturas sujeitas à fadiga de alto ciclo também são avaliadas. A lei de Paris é utilizada para a estimativa da taxa de crescimento das fissuras. O último tipo de problema considerado é a fratura em materiais quase-frágeis. O modelo de fissura coesiva é empregado para a representação do comportamento não-linear físico próximo à ponta. O sistema de equações não-linear obtido é resolvido a partir de um algoritmo iterativo denominado operador constante. O estado de tensão na ponta, determinado por extrapolação, é utilizado para a verificação da estabilidade à propagação e o caminho de crescimento é definido a partir da formulação da MFEL. São observadas boas correspondências entre os resultados obtidos e as respostas encontradas na literatura, indicando a eficiência e a robustez do código computacional proposto. Melhorias do modelo numérico implementado também são discutidas.This work presents a numerical approach for crack propagation modelling in non-homogeneous two-dimensional structures. The mechanical structural behaviour is simulated using the elastostatic formulation of the Boundary Element Method (BEM) applied to isotropic materials. The BEM is an efficient and robust numerical technique for crack propagation analyses. The non-requirement of a domain mesh enables the BEM for accurately quantifying the stresses concentration at the crack tip. Moreover, the mesh dimension reduction provided by the BEM makes the remeshing procedures during crack growth a less complex task. The dual BEM formulation is adopted, in which singular and hypersingular integral equations are applied. The non-homogeneous domains are modelled using the sub-region technique. The Linear Elastic Fracture Mechanics (LEFM) is applied to analyze the fracture in brittle materials. The stress intensity factors are evaluated through the J-integral and the maximum circumferential stress theory is adopted to define the crack propagation angle and the equivalent stress intensity factor. Problems involving hydraulic fracture (fracking) are also investigated applying the LEFM. A modified J-integral scheme is implemented to consider the hydrostatic pressure acting at the crack faces. Structures subjected to high-cycle fatigue are also addressed. The Paris law is used to estimate the crack growth rate. The last type of problem considered is the fracture in quasi-brittle materials. The cohesive crack model is used to represent the material nonlinear behaviour next to the crack tip. The nonlinear system of equations obtained is solved by an iterative algorithm named constant operator. The state of stress at the tip, obtained by extrapolation, is used to verify crack growth stability and the crack path is defined by the LEFM formulation. Good agreement is observed among the results achieved by the BEM model and the responses available in literature, showing the efficiency and robustness of the proposed numerical scheme. Further improvements of the BEM code are also discussed.Biblioteca Digitais de Teses e Dissertações da USPLeonel, Edson DennerAndrade, Heider de Castro e2017-04-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-27042017-093540/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-27042017-093540Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
Crack propagation analysis in non-homogeneous two-dimensional structures using the Boundary Element Method
title Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
spellingShingle Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
Andrade, Heider de Castro e
Boundary Element Method
Domínios não-homogêneos
Fracture mechanics
Mecânica da fratura
Método dos Elementos de Contorno
Multiple crack propagation
Non-homogeneous domains
Propagação de múltiplas fissuras
title_short Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
title_full Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
title_fullStr Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
title_full_unstemmed Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
title_sort Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno
author Andrade, Heider de Castro e
author_facet Andrade, Heider de Castro e
author_role author
dc.contributor.none.fl_str_mv Leonel, Edson Denner
dc.contributor.author.fl_str_mv Andrade, Heider de Castro e
dc.subject.por.fl_str_mv Boundary Element Method
Domínios não-homogêneos
Fracture mechanics
Mecânica da fratura
Método dos Elementos de Contorno
Multiple crack propagation
Non-homogeneous domains
Propagação de múltiplas fissuras
topic Boundary Element Method
Domínios não-homogêneos
Fracture mechanics
Mecânica da fratura
Método dos Elementos de Contorno
Multiple crack propagation
Non-homogeneous domains
Propagação de múltiplas fissuras
description Este trabalho apresenta um modelo numérico para a análise da propagação de fissuras em estruturas bidimensionais não-homogêneas. O comportamento mecânico é simulado a partir da formulação elastostática do Método dos Elementos de Contorno (MEC) aplicada a materiais isotrópicos. O MEC é uma eficiente e robusta técnica numérica para análises de propagação de fissuras. A não exigência de uma malha de domínio pelo método permite uma representação precisa da concentração de tensão nas pontas. Além disso, a redução da dimensionalidade proporcionada pelo MEC facilita o processo de remalhamento durante o crescimento das fissuras. A formulação dual do MEC é adotada, na qual as equações integrais singular e hipersingular são aplicadas. A modelagem de domínios não-homogêneos é realizada a partir da técnica de sub-regiões. A Mecânica da Fratura Elástico-Linear (MFEL) é aplicada para a análise da fratura em materiais frágeis. Os fatores de intensidade de tensão são determinados a partir da integral-J e a teoria da máxima tensão circunferencial é adotada para definir a direção de propagação das fissuras e o fator de intensidade de tensão equivalente. Problemas envolvendo fraturamento hidráulico também são investigados a partir da aplicação da MFEL. A integral-J é modificada para a consideração da pressão hidrostática atuante sobre as faces da fissura. Estruturas sujeitas à fadiga de alto ciclo também são avaliadas. A lei de Paris é utilizada para a estimativa da taxa de crescimento das fissuras. O último tipo de problema considerado é a fratura em materiais quase-frágeis. O modelo de fissura coesiva é empregado para a representação do comportamento não-linear físico próximo à ponta. O sistema de equações não-linear obtido é resolvido a partir de um algoritmo iterativo denominado operador constante. O estado de tensão na ponta, determinado por extrapolação, é utilizado para a verificação da estabilidade à propagação e o caminho de crescimento é definido a partir da formulação da MFEL. São observadas boas correspondências entre os resultados obtidos e as respostas encontradas na literatura, indicando a eficiência e a robustez do código computacional proposto. Melhorias do modelo numérico implementado também são discutidas.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27042017-093540/
url http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27042017-093540/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091120807804928