Designing antivirals against rabies using molecular docking and protein modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/10/10134/tde-13122021-161816/ |
Resumo: | Rabies is a zoonotic disease that mainly affects poor population in developing countries. While there is an efficient vaccine for it, many of those in the areas most affected by the disease can be unaware of the vaccine and their need for it, may be unable to reach an area where the vaccines are readily available, or may be unable to pay for the high cost of vaccination and immunoglobulin. This project aimed to find a potential treatment for the disease when it has already reached its later stages, so those who cant access vaccination still have a chance of surviving this lethal disease. This project focused on the bioinformatics capability of finding potential ligands that could inactivate or block all five proteins or rabies, so that they would be unable to bind to host receptors, or to damage the immune system of patients. All five proteins of rabies from nineteen different strains (ninety-five proteins) were modeled through homology modeling, and twenty-six drug-like ligands that passed Lipinskis rule of five were chosen. The first docking step was to put all ninety-five proteins through a blind docking with each of the twenty-six ligands to narrow down the number of ligands and analyze potential active sites. After all the blind dockings were concluded, seventeen ligands were chosen for the active site docking, which also considered specific residues (found from literature, bioinformatic tools, and analysis of blind docking) as potential active sites of each protein. The blind docking results were also visualized and analyzed for both the binding energies of each binding as well as the location of the connections. The number of times each of the residues from the potential active sites were accessed were also analyzed. The ligands that had the best results overall were narrowed down to four and analyzed both for their structure and pharmacology in the context of rabies infection. Potential active sites were also analyzed and narrowed down to the most likely active sites for each protein. |
id |
USP_a27c4b2de5dace36e36f541146564076 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13122021-161816 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Designing antivirals against rabies using molecular docking and protein modelingDesign de antivirais contra raiva utilizando docagem molecular e modelagem de proteínasAntiviraisAntiviralsDocking molecularHomologiaHomologyMolecular dockingProteínaProteinsRabiesRaivaRabies is a zoonotic disease that mainly affects poor population in developing countries. While there is an efficient vaccine for it, many of those in the areas most affected by the disease can be unaware of the vaccine and their need for it, may be unable to reach an area where the vaccines are readily available, or may be unable to pay for the high cost of vaccination and immunoglobulin. This project aimed to find a potential treatment for the disease when it has already reached its later stages, so those who cant access vaccination still have a chance of surviving this lethal disease. This project focused on the bioinformatics capability of finding potential ligands that could inactivate or block all five proteins or rabies, so that they would be unable to bind to host receptors, or to damage the immune system of patients. All five proteins of rabies from nineteen different strains (ninety-five proteins) were modeled through homology modeling, and twenty-six drug-like ligands that passed Lipinskis rule of five were chosen. The first docking step was to put all ninety-five proteins through a blind docking with each of the twenty-six ligands to narrow down the number of ligands and analyze potential active sites. After all the blind dockings were concluded, seventeen ligands were chosen for the active site docking, which also considered specific residues (found from literature, bioinformatic tools, and analysis of blind docking) as potential active sites of each protein. The blind docking results were also visualized and analyzed for both the binding energies of each binding as well as the location of the connections. The number of times each of the residues from the potential active sites were accessed were also analyzed. The ligands that had the best results overall were narrowed down to four and analyzed both for their structure and pharmacology in the context of rabies infection. Potential active sites were also analyzed and narrowed down to the most likely active sites for each protein.A raiva é uma doença zoonótica que afeta principalmente a população pobre de países em desenvolvimento. Embora exista uma vacina eficiente contra o vírus, muitas das pessoas nas áreas mais afetadas pela doença podem não ter conhecimento da vacina e de sua necessidade, não conseguem chegar a uma área onde as vacinas estão prontamente disponíveis, ou não podem pagar pelo alto custo da vacinação e da imunoglobulina. Este projeto teve como objetivo encontrar um tratamento potencial para a doença quando ela já atingiu seus estágios mais avançados, de modo que aqueles que não têm acesso à vacinação ainda tenham uma chance de sobreviver à esta doença letal. Este projeto teve como foco a capacidade da bioinformática de encontrar potenciais ligantes que pudessem inativar ou bloquear todas as cinco proteínas ou raiva, de modo que fossem incapazes de se ligar aos receptores do hospedeiro, ou de danificar o sistema imunológico dos pacientes. Todas as cinco proteínas da raiva de dezenove cepas diferentes (noventa e cinco proteínas) foram modeladas por meio de modelagem de homologia, e vinte e seis ligantes que passaram pela regra de cinco de Lipinski foram escolhidos. A primeira etapa de docagem foi docar todas as 95 proteínas por meio de uma docagem cega com cada um dos 26 ligantes para reduzir o número de ligantes e analisar potenciais sítios ativos. Após a conclusão de todos as docagens cegas, foram escolhidos dezessete ligantes para a docagem ativa, que considerou resíduos específicos (encontrados na literatura, ferramentas de bioinformática e análise da docagem cega) como potenciais sítios ativos de cada proteína. Os resultados da docagem cega também foram visualizados e analisados quanto às energias de ligação, bem como a localização das conexões. O número de vezes que cada um dos resíduos dos potenciais sítios ativos foi acessado também foi analisado. Os ligantes que tiveram os melhores resultados gerais foram reduzidos a quatro e tiveram suas estruturas e farmacologia analisadas no contexto da infecção por raiva. Os sítios ativos potenciais também foram analisados e limitados aos sítios ativos mais prováveis para cada proteína.Biblioteca Digitais de Teses e Dissertações da USPBrandão, Paulo EduardoAguiar, Joana Rocha da Silveira Barreto de2021-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/10/10134/tde-13122021-161816/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-13122021-161816Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Designing antivirals against rabies using molecular docking and protein modeling Design de antivirais contra raiva utilizando docagem molecular e modelagem de proteínas |
title |
Designing antivirals against rabies using molecular docking and protein modeling |
spellingShingle |
Designing antivirals against rabies using molecular docking and protein modeling Aguiar, Joana Rocha da Silveira Barreto de Antivirais Antivirals Docking molecular Homologia Homology Molecular docking Proteína Proteins Rabies Raiva |
title_short |
Designing antivirals against rabies using molecular docking and protein modeling |
title_full |
Designing antivirals against rabies using molecular docking and protein modeling |
title_fullStr |
Designing antivirals against rabies using molecular docking and protein modeling |
title_full_unstemmed |
Designing antivirals against rabies using molecular docking and protein modeling |
title_sort |
Designing antivirals against rabies using molecular docking and protein modeling |
author |
Aguiar, Joana Rocha da Silveira Barreto de |
author_facet |
Aguiar, Joana Rocha da Silveira Barreto de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brandão, Paulo Eduardo |
dc.contributor.author.fl_str_mv |
Aguiar, Joana Rocha da Silveira Barreto de |
dc.subject.por.fl_str_mv |
Antivirais Antivirals Docking molecular Homologia Homology Molecular docking Proteína Proteins Rabies Raiva |
topic |
Antivirais Antivirals Docking molecular Homologia Homology Molecular docking Proteína Proteins Rabies Raiva |
description |
Rabies is a zoonotic disease that mainly affects poor population in developing countries. While there is an efficient vaccine for it, many of those in the areas most affected by the disease can be unaware of the vaccine and their need for it, may be unable to reach an area where the vaccines are readily available, or may be unable to pay for the high cost of vaccination and immunoglobulin. This project aimed to find a potential treatment for the disease when it has already reached its later stages, so those who cant access vaccination still have a chance of surviving this lethal disease. This project focused on the bioinformatics capability of finding potential ligands that could inactivate or block all five proteins or rabies, so that they would be unable to bind to host receptors, or to damage the immune system of patients. All five proteins of rabies from nineteen different strains (ninety-five proteins) were modeled through homology modeling, and twenty-six drug-like ligands that passed Lipinskis rule of five were chosen. The first docking step was to put all ninety-five proteins through a blind docking with each of the twenty-six ligands to narrow down the number of ligands and analyze potential active sites. After all the blind dockings were concluded, seventeen ligands were chosen for the active site docking, which also considered specific residues (found from literature, bioinformatic tools, and analysis of blind docking) as potential active sites of each protein. The blind docking results were also visualized and analyzed for both the binding energies of each binding as well as the location of the connections. The number of times each of the residues from the potential active sites were accessed were also analyzed. The ligands that had the best results overall were narrowed down to four and analyzed both for their structure and pharmacology in the context of rabies infection. Potential active sites were also analyzed and narrowed down to the most likely active sites for each protein. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/10/10134/tde-13122021-161816/ |
url |
https://www.teses.usp.br/teses/disponiveis/10/10134/tde-13122021-161816/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256508094480384 |