Aspects of entanglement, chaos and complexity: from many-body to high energy systems

Detalhes bibliográficos
Autor(a) principal: Júnior, Daniel Lombelo Teixeira
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-08042021-094350/
Resumo: The determination of structures that can emerge out of the interactions among the constituents of a quantum many-body system is a foundational task of condensed matter physics. One of the most advanced proposals within this paradigm is the holographic generation of spacetime in some strongly coupled chaotic systems with particular patterns of entanglement and quantum complexity, which is historically motivated by the holographic principle and by the AdS/CFT correspondence. As a part of this scenario, this thesis is dedicated to the analysis of some concepts that are relevant to such proposal, where they are separately applied to some lattice models. Concretely, the matter is divided into three main studies: first, the calculation of the time-dependent circuit complexity in the Ising model with a periodically driven transverse field, where we establish the effectiveness of this quantity for the detection of nonequilibrium quantum phase transitions. Our results provide hints for understanding how universal features out of equilibrium are captured by the complexity of quantum states. Second, the derivation of a bound on the maximal rate of entanglement entropy production for a class of one-dimensional quantum circuits with periodic dynamics. An example of a circuit that saturates the bound is composed by parallel SWAP gates acting on entangled pairs. Out of inequalities obeyed by the entropy, in addition to considerations on multipartite entanglement, we indicate that the effect of a chaotic dynamics cannot result in the increase on the rate of entanglement production. Third, the construction of a class of supersymmetric many-body systems using symmetric inverse semigroups. For particular toy models built out of this structure, we study some questions regarding supersymmetric phases, integrability, disorder, spreading of quantum information and many-body localization. Finally, besides those three works, we include an essay addressing the problem of emergent holographic spaces out of two-dimensional conformal field theories, where the mediation between the two parts is performed by means of a Riemannian structure defined in the Hilbert space of the field theory.
id USP_a3e8a2e5313c5569849d1f4b97d90885
oai_identifier_str oai:teses.usp.br:tde-08042021-094350
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Aspects of entanglement, chaos and complexity: from many-body to high energy systemsAspectos de emaranhamento, caos e complexidade: dos sistemas de muitos corpos aos de altas energiasQuantum phase transitions; Quantum complexity; Quantum chaos; Entanglement dynamics; Emergent geometriesTransições de fase quânticas; Complexidade quântica; Caos quântico; Dinâmica do emaranhamento; Geometrias emergentesThe determination of structures that can emerge out of the interactions among the constituents of a quantum many-body system is a foundational task of condensed matter physics. One of the most advanced proposals within this paradigm is the holographic generation of spacetime in some strongly coupled chaotic systems with particular patterns of entanglement and quantum complexity, which is historically motivated by the holographic principle and by the AdS/CFT correspondence. As a part of this scenario, this thesis is dedicated to the analysis of some concepts that are relevant to such proposal, where they are separately applied to some lattice models. Concretely, the matter is divided into three main studies: first, the calculation of the time-dependent circuit complexity in the Ising model with a periodically driven transverse field, where we establish the effectiveness of this quantity for the detection of nonequilibrium quantum phase transitions. Our results provide hints for understanding how universal features out of equilibrium are captured by the complexity of quantum states. Second, the derivation of a bound on the maximal rate of entanglement entropy production for a class of one-dimensional quantum circuits with periodic dynamics. An example of a circuit that saturates the bound is composed by parallel SWAP gates acting on entangled pairs. Out of inequalities obeyed by the entropy, in addition to considerations on multipartite entanglement, we indicate that the effect of a chaotic dynamics cannot result in the increase on the rate of entanglement production. Third, the construction of a class of supersymmetric many-body systems using symmetric inverse semigroups. For particular toy models built out of this structure, we study some questions regarding supersymmetric phases, integrability, disorder, spreading of quantum information and many-body localization. Finally, besides those three works, we include an essay addressing the problem of emergent holographic spaces out of two-dimensional conformal field theories, where the mediation between the two parts is performed by means of a Riemannian structure defined in the Hilbert space of the field theory.A determinação de estruturas que podem emergir a partir das interações entre os constituintes de um sistema quântico de muitos corpos é uma tarefa fundante da física da matéria condensada. Uma das propostas mais avançadas nesse paradigma, historicamente motivada pelo princípio holográfico e pela correspondência AdS/CFT, é a geração holográfica do espaço-tempo em alguns sistemas caóticos, fortemente correlacionados, com certos padrões de emaranhamento e complexidade quântica. Como parte desse cenário, esta tese é dedicada à análise de alguns conceitos relevantes em tal proposta, onde são aplicados separadamente para alguns modelos com estrutura de rede. Concretamente, o assunto é dividido em três estudos principais: primeiro, o cálculo da complexidade de estados em função do tempo para o modelo de Ising com um campo transverso oscilante, onde estabelecemos a eficácia dessa quantidade na detecção de transições de fase quânticas de não-equilíbrio. Nossos resultados proporcionam pistas para entender como características universais são capturadas pela complexidade quando fora de equilíbrio. Segundo, a derivação de uma cota superior na produção de entropia de emaranhamento para uma classe de circuitos quânticos unidimensionais com dinâmica periódica. Um exemplo de circuito que satura essa cota é composto de portões-SWAP paralelos atuando em pares emaranhados. A partir de desigualdades obedecidas pela entropia, somadas à considerações sobre emaranhamento muiltipartite, indicamos que o efeito de uma dinâmica caótica não pode resultar em um aumento da taxa de produção de emaranhamento. Terceiro, a construção de uma classe de sistemas de muitos corpos supersimétricos utilizando semigrupos simétricos inversos. Para toy models particulares gerados com essa estrutura, estudamos algumas questões a respeito de fases supersimétricas, integrabilidade, desordem, propagação da informação quântica e localização de muitos corpos. Por fim, além desses três trabalhos, incluímos um ensaio abordando o problema de espaços holográficos emergentes a partir de teorias de campo conformes em duas dimensões, em que a mediação entre as duas partes é feita utilizando uma estrutura Riemanniana definida no espaço de Hilbert da teoria de campos.Biblioteca Digitais de Teses e Dissertações da USPTrancanelli, DiegoJúnior, Daniel Lombelo Teixeira2021-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-08042021-094350/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-08T17:48:02Zoai:teses.usp.br:tde-08042021-094350Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-08T17:48:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aspects of entanglement, chaos and complexity: from many-body to high energy systems
Aspectos de emaranhamento, caos e complexidade: dos sistemas de muitos corpos aos de altas energias
title Aspects of entanglement, chaos and complexity: from many-body to high energy systems
spellingShingle Aspects of entanglement, chaos and complexity: from many-body to high energy systems
Júnior, Daniel Lombelo Teixeira
Quantum phase transitions; Quantum complexity; Quantum chaos; Entanglement dynamics; Emergent geometries
Transições de fase quânticas; Complexidade quântica; Caos quântico; Dinâmica do emaranhamento; Geometrias emergentes
title_short Aspects of entanglement, chaos and complexity: from many-body to high energy systems
title_full Aspects of entanglement, chaos and complexity: from many-body to high energy systems
title_fullStr Aspects of entanglement, chaos and complexity: from many-body to high energy systems
title_full_unstemmed Aspects of entanglement, chaos and complexity: from many-body to high energy systems
title_sort Aspects of entanglement, chaos and complexity: from many-body to high energy systems
author Júnior, Daniel Lombelo Teixeira
author_facet Júnior, Daniel Lombelo Teixeira
author_role author
dc.contributor.none.fl_str_mv Trancanelli, Diego
dc.contributor.author.fl_str_mv Júnior, Daniel Lombelo Teixeira
dc.subject.por.fl_str_mv Quantum phase transitions; Quantum complexity; Quantum chaos; Entanglement dynamics; Emergent geometries
Transições de fase quânticas; Complexidade quântica; Caos quântico; Dinâmica do emaranhamento; Geometrias emergentes
topic Quantum phase transitions; Quantum complexity; Quantum chaos; Entanglement dynamics; Emergent geometries
Transições de fase quânticas; Complexidade quântica; Caos quântico; Dinâmica do emaranhamento; Geometrias emergentes
description The determination of structures that can emerge out of the interactions among the constituents of a quantum many-body system is a foundational task of condensed matter physics. One of the most advanced proposals within this paradigm is the holographic generation of spacetime in some strongly coupled chaotic systems with particular patterns of entanglement and quantum complexity, which is historically motivated by the holographic principle and by the AdS/CFT correspondence. As a part of this scenario, this thesis is dedicated to the analysis of some concepts that are relevant to such proposal, where they are separately applied to some lattice models. Concretely, the matter is divided into three main studies: first, the calculation of the time-dependent circuit complexity in the Ising model with a periodically driven transverse field, where we establish the effectiveness of this quantity for the detection of nonequilibrium quantum phase transitions. Our results provide hints for understanding how universal features out of equilibrium are captured by the complexity of quantum states. Second, the derivation of a bound on the maximal rate of entanglement entropy production for a class of one-dimensional quantum circuits with periodic dynamics. An example of a circuit that saturates the bound is composed by parallel SWAP gates acting on entangled pairs. Out of inequalities obeyed by the entropy, in addition to considerations on multipartite entanglement, we indicate that the effect of a chaotic dynamics cannot result in the increase on the rate of entanglement production. Third, the construction of a class of supersymmetric many-body systems using symmetric inverse semigroups. For particular toy models built out of this structure, we study some questions regarding supersymmetric phases, integrability, disorder, spreading of quantum information and many-body localization. Finally, besides those three works, we include an essay addressing the problem of emergent holographic spaces out of two-dimensional conformal field theories, where the mediation between the two parts is performed by means of a Riemannian structure defined in the Hilbert space of the field theory.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-08042021-094350/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-08042021-094350/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256798800642048