Modelos de efeitos aleatórios e populações finitas

Detalhes bibliográficos
Autor(a) principal: Lencina, Viviana Beatriz
Data de Publicação: 2002
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-131408/
Resumo: Neste trabalho discutimos problemas de inferência em populações finitas focando nossa atenção em estimadores ótimos sob modelos probabilísticos baseados no planejamento, incluindo amostragens com um e dois estágios. Os parâmetros de interesse são combinações lineares das variáveis envolvidas nos modelos probabilísticos e os estimadores são combinações lineares das variáveis observáveis após a amostragem. A metodologia desenvolvida permite obter estimadores ótimos da mesma forma que o enfoque baseado em superpopulações. A introdução de erro gaussiano no modelo posiciona o problema no mesmo contexto dos modelos lineares clássicos e, em situações onde é possível observar várias vezes uma mesma unidade, a teoria de modelos mistos pode ser empregada. Resolvemos a controvérsia nos modelos mistos definições dos efeitos de interesse que levam em consideração as deiferentes fontes de aleatoriedade e que podem ser aplicadas também no caso infinito. Discutimos a possibilidade de avaliar inexistência de efeito principal do fator aleatório sob os modelos propostos e em situações de dados desbalanceados, salientamos a existência de testes F exatos para avaliar a anulação de componentes de variância e estudamos o poder dos mesmos para diferentes níveis de desbalanceamento
id USP_a51b6955c2be903b095a706658a0b8f4
oai_identifier_str oai:teses.usp.br:tde-20210729-131408
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de efeitos aleatórios e populações finitasnot availableTeoria Da Previsão Em Populações FinitasNeste trabalho discutimos problemas de inferência em populações finitas focando nossa atenção em estimadores ótimos sob modelos probabilísticos baseados no planejamento, incluindo amostragens com um e dois estágios. Os parâmetros de interesse são combinações lineares das variáveis envolvidas nos modelos probabilísticos e os estimadores são combinações lineares das variáveis observáveis após a amostragem. A metodologia desenvolvida permite obter estimadores ótimos da mesma forma que o enfoque baseado em superpopulações. A introdução de erro gaussiano no modelo posiciona o problema no mesmo contexto dos modelos lineares clássicos e, em situações onde é possível observar várias vezes uma mesma unidade, a teoria de modelos mistos pode ser empregada. Resolvemos a controvérsia nos modelos mistos definições dos efeitos de interesse que levam em consideração as deiferentes fontes de aleatoriedade e que podem ser aplicadas também no caso infinito. Discutimos a possibilidade de avaliar inexistência de efeito principal do fator aleatório sob os modelos propostos e em situações de dados desbalanceados, salientamos a existência de testes F exatos para avaliar a anulação de componentes de variância e estudamos o poder dos mesmos para diferentes níveis de desbalanceamentonot availableBiblioteca Digitais de Teses e Dissertações da USPSinger, Júlio da MottaLencina, Viviana Beatriz2002-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-131408/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T12:28:02Zoai:teses.usp.br:tde-20210729-131408Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T12:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de efeitos aleatórios e populações finitas
not available
title Modelos de efeitos aleatórios e populações finitas
spellingShingle Modelos de efeitos aleatórios e populações finitas
Lencina, Viviana Beatriz
Teoria Da Previsão Em Populações Finitas
title_short Modelos de efeitos aleatórios e populações finitas
title_full Modelos de efeitos aleatórios e populações finitas
title_fullStr Modelos de efeitos aleatórios e populações finitas
title_full_unstemmed Modelos de efeitos aleatórios e populações finitas
title_sort Modelos de efeitos aleatórios e populações finitas
author Lencina, Viviana Beatriz
author_facet Lencina, Viviana Beatriz
author_role author
dc.contributor.none.fl_str_mv Singer, Júlio da Motta
dc.contributor.author.fl_str_mv Lencina, Viviana Beatriz
dc.subject.por.fl_str_mv Teoria Da Previsão Em Populações Finitas
topic Teoria Da Previsão Em Populações Finitas
description Neste trabalho discutimos problemas de inferência em populações finitas focando nossa atenção em estimadores ótimos sob modelos probabilísticos baseados no planejamento, incluindo amostragens com um e dois estágios. Os parâmetros de interesse são combinações lineares das variáveis envolvidas nos modelos probabilísticos e os estimadores são combinações lineares das variáveis observáveis após a amostragem. A metodologia desenvolvida permite obter estimadores ótimos da mesma forma que o enfoque baseado em superpopulações. A introdução de erro gaussiano no modelo posiciona o problema no mesmo contexto dos modelos lineares clássicos e, em situações onde é possível observar várias vezes uma mesma unidade, a teoria de modelos mistos pode ser empregada. Resolvemos a controvérsia nos modelos mistos definições dos efeitos de interesse que levam em consideração as deiferentes fontes de aleatoriedade e que podem ser aplicadas também no caso infinito. Discutimos a possibilidade de avaliar inexistência de efeito principal do fator aleatório sob os modelos propostos e em situações de dados desbalanceados, salientamos a existência de testes F exatos para avaliar a anulação de componentes de variância e estudamos o poder dos mesmos para diferentes níveis de desbalanceamento
publishDate 2002
dc.date.none.fl_str_mv 2002-12-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-131408/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-131408/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257208801198080