Imersões sub-Riemannianas em formas espaciais complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-124041/ |
Resumo: | O objetivo deste trabalho é estudar teoremas de rigidez para um tipo especial de variedades sub-Riemannianas isometricamente imersas em um espaço de formas complexas. Definimos e estudamos algumas características de um tipo especial de geometria sub-Riemanniana. Provamos a existência e unicidade de uma conexão associada à estrutura sub-Riemanniana e a relacionamos com uma determinada conexão de Levi-Civita. Após uma breve revisão da teoria de uma hipervariedade isometricamente imersa em uma variedade Riemanniana e do estudo de um caso particular de submersão Riemanniana, provamos alguns teoremas de rigidez para uma hipervariedade sub-Riemanniana isometricamente imersa em uma forma espacial complexa. Finalizamos analisando o caso de imersões de variedades sub-Riemannianas homogêneas tridimensionais e fazemos alguns exemplos de imersões isométricas |
id |
USP_a53b2d97d4888b767d2ab4d996c63008 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-124041 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Imersões sub-Riemannianas em formas espaciais complexasnot availableGeometria DiferencialGeometria Sub-RiemannianaO objetivo deste trabalho é estudar teoremas de rigidez para um tipo especial de variedades sub-Riemannianas isometricamente imersas em um espaço de formas complexas. Definimos e estudamos algumas características de um tipo especial de geometria sub-Riemanniana. Provamos a existência e unicidade de uma conexão associada à estrutura sub-Riemanniana e a relacionamos com uma determinada conexão de Levi-Civita. Após uma breve revisão da teoria de uma hipervariedade isometricamente imersa em uma variedade Riemanniana e do estudo de um caso particular de submersão Riemanniana, provamos alguns teoremas de rigidez para uma hipervariedade sub-Riemanniana isometricamente imersa em uma forma espacial complexa. Finalizamos analisando o caso de imersões de variedades sub-Riemannianas homogêneas tridimensionais e fazemos alguns exemplos de imersões isométricasThe purpose of this work is to study rigidity theorems for a special type of sub-Riemannian hypersufaces that are isometricaly immersed in complex space forms. We define and study a special type fo sub-Riemannian manifold. We prove the existence and uniqueness of a connection associated with that sub-Riemannian structure and we also relate it to the Levi-civita connection of a metric which is naturally defined from the sub-Riemannian one. After doing a brief review of the theory of isometric immersions of hypersurfaces in Riemannian manifolds and examining a special type of Riemannian submersion we prove theorems related to the rigidity of isometric immersions of sub-Riemannian hypersufaces in comples space forms. We finish this work studying the tridimensional homogeneous sub-Riemannian case and showing some examples of isometric immersions in complex space formsBiblioteca Digitais de Teses e Dissertações da USPVerderesi, José AntonioMafra, Albetã Costa2001-03-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-124041/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:05:17Zoai:teses.usp.br:tde-20210729-124041Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:05:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Imersões sub-Riemannianas em formas espaciais complexas not available |
title |
Imersões sub-Riemannianas em formas espaciais complexas |
spellingShingle |
Imersões sub-Riemannianas em formas espaciais complexas Mafra, Albetã Costa Geometria Diferencial Geometria Sub-Riemanniana |
title_short |
Imersões sub-Riemannianas em formas espaciais complexas |
title_full |
Imersões sub-Riemannianas em formas espaciais complexas |
title_fullStr |
Imersões sub-Riemannianas em formas espaciais complexas |
title_full_unstemmed |
Imersões sub-Riemannianas em formas espaciais complexas |
title_sort |
Imersões sub-Riemannianas em formas espaciais complexas |
author |
Mafra, Albetã Costa |
author_facet |
Mafra, Albetã Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Verderesi, José Antonio |
dc.contributor.author.fl_str_mv |
Mafra, Albetã Costa |
dc.subject.por.fl_str_mv |
Geometria Diferencial Geometria Sub-Riemanniana |
topic |
Geometria Diferencial Geometria Sub-Riemanniana |
description |
O objetivo deste trabalho é estudar teoremas de rigidez para um tipo especial de variedades sub-Riemannianas isometricamente imersas em um espaço de formas complexas. Definimos e estudamos algumas características de um tipo especial de geometria sub-Riemanniana. Provamos a existência e unicidade de uma conexão associada à estrutura sub-Riemanniana e a relacionamos com uma determinada conexão de Levi-Civita. Após uma breve revisão da teoria de uma hipervariedade isometricamente imersa em uma variedade Riemanniana e do estudo de um caso particular de submersão Riemanniana, provamos alguns teoremas de rigidez para uma hipervariedade sub-Riemanniana isometricamente imersa em uma forma espacial complexa. Finalizamos analisando o caso de imersões de variedades sub-Riemannianas homogêneas tridimensionais e fazemos alguns exemplos de imersões isométricas |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-124041/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-124041/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208323047424 |